Datasets:
File size: 1,796 Bytes
c858d8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
license: mit
---
# Difficulty Estimation on DeepScaleR
We annotate the entire [**DeepScaleR**](https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview) dataset with a **difficulty score** based on the performance of the [Qwen 2.5-MATH-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) model. This provides an adaptive signal for curriculum construction and model evaluation.
**DeepScaleR** is a curated dataset of 40,000 reasoning-intensive problems used to train and evaluate reinforcement learning-based methods for large language models.
## Difficulty Scoring Method
Difficulty scores are estimated using the **Qwen 2.5-MATH-7B** model with the following generation settings:
- `temperature = 0.6`
- `top_p = 0.9`
- `max_tokens = 4096`
- Inference performed using [vLLM](https://github.com/vllm-project/vllm)
- Each problem is attempted **128 times**
The difficulty score `d_i` for each problem is computed as:
d_i = 100 × (1 - (# successes / 128))
This approach balances the evaluation signal:
- A **strong model** would trivially solve easy problems, compressing the difficulty scale.
- A **weak model** would fail uniformly, providing poor resolution.
- Qwen 2.5-MATH-7B was selected for its **mid-range capabilities**, offering meaningful gradients across a wide spectrum of problems.
## Difficulty Estimation on Other Datasets
We also apply the same difficulty estimation procedure to the following datasets:
- [Open Reasoner Zero](https://huggingface.co/datasets/lime-nlp/orz_math_difficulty)
- [MATH](https://huggingface.co/datasets/lime-nlp/MATH_difficulty)
- [GSM8K](https://huggingface.co/datasets/lime-nlp/GSM8K_difficulty)
## 📬 Contact
For questions or feedback, feel free to reach out to **Taiwei Shi** at [taiweish@usc.edu](mailto:taiweish@usc.edu). |