Datasets:
Tasks:
Summarization
Modalities:
Text
Formats:
csv
Sub-tasks:
news-articles-summarization
Size:
10K - 100K
License:
initial commit
Browse files- .gitattributes +1 -0
- .gitignore +28 -0
- README.md +99 -1
- data/test.csv +3 -0
- data/train.csv +3 -0
- data/val.csv +3 -0
- tradenewssum.py +53 -0
.gitattributes
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 4 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*.ipynb_checkpoints
|
| 5 |
+
*.DS_Store
|
| 6 |
+
|
| 7 |
+
# Temporary files
|
| 8 |
+
*.tmp
|
| 9 |
+
*.log
|
| 10 |
+
*.bak
|
| 11 |
+
*.swp
|
| 12 |
+
|
| 13 |
+
# VSCode / Jupyter
|
| 14 |
+
.vscode/
|
| 15 |
+
.ipynb_checkpoints/
|
| 16 |
+
.env
|
| 17 |
+
.venv
|
| 18 |
+
|
| 19 |
+
# OS metadata
|
| 20 |
+
Thumbs.db
|
| 21 |
+
Desktop.ini
|
| 22 |
+
|
| 23 |
+
# Hugging Face cache (local downloads)
|
| 24 |
+
~/.cache/huggingface/
|
| 25 |
+
|
| 26 |
+
# Do not ignore data/ — it's used for dataset splits
|
| 27 |
+
# But you can uncomment below if you don’t want to upload large CSVs
|
| 28 |
+
# data/*.csv
|
README.md
CHANGED
|
@@ -1,3 +1,101 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
pretty_name: TradeNewsSum
|
| 3 |
+
tags:
|
| 4 |
+
- summarization
|
| 5 |
+
- multilingual
|
| 6 |
+
- russian
|
| 7 |
+
- english
|
| 8 |
+
- news
|
| 9 |
+
- trade
|
| 10 |
+
- abstractive
|
| 11 |
+
language:
|
| 12 |
+
- ru
|
| 13 |
+
- en
|
| 14 |
+
language_creators:
|
| 15 |
+
- found
|
| 16 |
+
- expert-generated
|
| 17 |
+
annotations_creators:
|
| 18 |
+
- expert-generated
|
| 19 |
+
task_categories:
|
| 20 |
+
- summarization
|
| 21 |
+
task_ids:
|
| 22 |
+
- news-articles-summarization
|
| 23 |
+
multilinguality:
|
| 24 |
+
- multilingual
|
| 25 |
+
license:
|
| 26 |
+
- cc-by-4.0
|
| 27 |
+
source_datasets:
|
| 28 |
+
- original
|
| 29 |
+
size_categories:
|
| 30 |
+
- 50K<n<100K
|
| 31 |
---
|
| 32 |
+
|
| 33 |
+
# TradeNewsSum: Multilingual Summarization Dataset for Trade News
|
| 34 |
+
|
| 35 |
+
TradeNewsSum is a multilingual dataset for **abstractive summarization** of trade-related news.
|
| 36 |
+
It includes over **59,000 manually aligned article-summary pairs** in Russian and English, focused on topics such as international trade, sanctions, investment, and oil markets.
|
| 37 |
+
|
| 38 |
+
The dataset is intended for training and evaluating summarization systems in both **monolingual** and **cross-lingual** settings.
|
| 39 |
+
|
| 40 |
+
### Annotation Guidelines
|
| 41 |
+
|
| 42 |
+
Each summary was manually annotated by **three independent experts**. Cross-verification was conducted to ensure **high factual accuracy** and **consistent wording**.
|
| 43 |
+
|
| 44 |
+
Summaries were created in accordance with the editorial standards of [trade-news.vavt.ru](https://trade-news.vavt.ru), with the following key requirements:
|
| 45 |
+
|
| 46 |
+
#### Must include:
|
| 47 |
+
- Numerical indicators: **volumes, percentages, dates**
|
| 48 |
+
- Names of **companies** (if present in the original)
|
| 49 |
+
- Mentioned **countries and goods**
|
| 50 |
+
|
| 51 |
+
#### Must exclude:
|
| 52 |
+
- Introductory phrases (e.g., *"it is worth noting"*, *"earlier it was reported"*)
|
| 53 |
+
- **Quotes** and **subjective statements**
|
| 54 |
+
|
| 55 |
+
#### Should replace:
|
| 56 |
+
- Vague time references (e.g., *"yesterday"*, *"recently"*) → **precise date + year** (based on the `dates` field)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
---
|
| 60 |
+
|
| 61 |
+
## Dataset Structure
|
| 62 |
+
|
| 63 |
+
Each example in the dataset contains:
|
| 64 |
+
|
| 65 |
+
- `text`: full article (usually a news report)
|
| 66 |
+
- `summary_orig_lang`: human-written summary in the same language
|
| 67 |
+
- `summary_translated`: translated version of the summary
|
| 68 |
+
- `orig_lang`: original language of the article (`ru` or `en`)
|
| 69 |
+
- `locations`: countries/regions mentioned
|
| 70 |
+
- `url`: source link
|
| 71 |
+
- `dates`: publication date (string)
|
| 72 |
+
|
| 73 |
+
---
|
| 74 |
+
|
| 75 |
+
## Dataset Splits
|
| 76 |
+
|
| 77 |
+
The dataset is split into training, validation, and test sets, stratified by language:
|
| 78 |
+
|
| 79 |
+
| Split | Russian (`ru`) | English (`en`) |
|
| 80 |
+
|---------------|----------------|----------------|
|
| 81 |
+
| Train | 32,041 | 15,475 |
|
| 82 |
+
| Validation | 4,005 | 1,934 |
|
| 83 |
+
| Test | 4,005 | 1,935 |
|
| 84 |
+
|
| 85 |
+
**Total:** 59,395 examples
|
| 86 |
+
**Languages:** Russian (≈68%), English (≈32%)
|
| 87 |
+
|
| 88 |
+
---
|
| 89 |
+
|
| 90 |
+
## Example
|
| 91 |
+
|
| 92 |
+
```json
|
| 93 |
+
{
|
| 94 |
+
"text": "Китайская Great Wall выведет на рынок РФ две модели внедорожников Tank Москва. 20 октября. INTERFAX.RU - Китайский автоконцерн Great Wall Motor (GWM), реализующий в РФ автомобили SUV-сегмента под одноименным брендом и маркой Haval, планирует вывести на российский рынок две модели рамных внедорожников бренда Tank в начале 2023 года. Как сообщили ""Интерфаксу"" в пресс-службе марки, в январе следующего года на рынок России выйдут внедорожники модели T300, в марте – Т500. На первоначальном этапе автомобили будут импортироваться из-за рубежа, уточнили в компании. Бренд Tank был основан GWM в 2021 г. Россия станет для него вторым зарубежным рынком после Саудовской Аравии. Там марка была представлена летом этого года. Модели построены на базе одноименной модульной платформы разработки GWM, ориентированной на поездки по бездорожью. Линейка силовых агрегатов Tank включает базовый двухлитровый бензиновый турбированный двигатель с непосредственным впрыском топлива мощностью 220 л.с. и крутящим моментом 387 Нм. Второй бензиновый двигатель - трехлитровый V-образный с шестью цилиндрами, мощностью 299 л.с. и крутящим моментом 500Нм. Линейка TANK также компонуется гибридными установками с электродвигателем: как классическими, так и подключаемыми. По данным АЕБ, продажи GWM в РФ (бренды Haval и Great Wall) за 9 месяцев 2022 г. снизились на 17%, до 20,791 тыс. шт., при общем падении рынка на 59,8%. Доля группы на упавшем рынке выросла более чем вдвое - с 2% до 4,1%. GWM – единственный китайский автопроизводитель с локальным производством в РФ по полному циклу. Автомобили Haval выпускаются в рамках СПИКа, подписанного в конце 2020 г., на тульском заводе ""Хавейл Мотор Мануфэкчуринг Рус"". В частности, это модели кроссоверов F7 и F7x, Dargo и Jolion, рамный внедорожник H9.",
|
| 95 |
+
"summary_orig_lang": "Китайская Great Wall выведет на рынок РФ две модели внедорожников Tank INTERFAX.RU - Китайский автоконцерн Great Wall Motor (GWM), реализующий в РФ автомобили SUV-сегмента под одноименным брендом и маркой Haval, планирует вывести на российский рынок две модели рамных внедорожников бренда Tank в начале 2023 года. Бренд Tank был основан GWM в 2021 г. Россия станет для него вторым зарубежным рынком после Саудовской Аравии. GWM – единственный китайский автопроизводитель с локальным производством в РФ по полному циклу.",
|
| 96 |
+
"summary_translated": "The Chinese Great Wall will bring to the Russian market two models of Tank INTERFAX.RU SUVs - the Chinese Great Wall Motor (GWM) autoconsortium, which sells SUV-segment vehicles under the same brand and brand Haval in Russia, plans to bring to the Russian market two models of Tank branded frame SUVs in early 2023. The Tank brand was founded by GWM in 2021. Russia will become the second foreign market for it after Saudi Arabia. GWM is the only Chinese car manufacturer with a full-cycle local production in the Russian Federation.",
|
| 97 |
+
"orig_lang": "ru",
|
| 98 |
+
"locations": "Китай, Саудовская Аравия",
|
| 99 |
+
"url": "https://www.interfax.ru/business/868775",
|
| 100 |
+
"dates": "2022-10-20",
|
| 101 |
+
}
|
data/test.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e07bfea553265e8120711ebd8997476e4ebbb2d2c11d78c61de87ed9d38bad78
|
| 3 |
+
size 24598902
|
data/train.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfa39db9ddacb57b8e9f17d276534805f7d3b7950b0f1a2debeb22a77590437b
|
| 3 |
+
size 195670959
|
data/val.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b15e946d8f9751a8de1bfc49854ad90867c1fef162bfaa0763da36bf8d02d29b
|
| 3 |
+
size 24356152
|
tradenewssum.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
import datasets
|
| 3 |
+
|
| 4 |
+
_DESCRIPTION = """\
|
| 5 |
+
TNSum is a multilingual dataset for abstractive summarization of trade-related news in Russian and English.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Tnsum(datasets.GeneratorBasedBuilder):
|
| 10 |
+
VERSION = datasets.Version("1.0.0")
|
| 11 |
+
|
| 12 |
+
def _info(self):
|
| 13 |
+
return datasets.DatasetInfo(
|
| 14 |
+
description=_DESCRIPTION,
|
| 15 |
+
features=datasets.Features(
|
| 16 |
+
{
|
| 17 |
+
"text": datasets.Value("string"),
|
| 18 |
+
"summary_orig_lang": datasets.Value("string"),
|
| 19 |
+
"summary_translated": datasets.Value("string"),
|
| 20 |
+
"orig_lang": datasets.ClassLabel(names=["ru", "en"]),
|
| 21 |
+
"split": datasets.Value("string"),
|
| 22 |
+
"locations": datasets.Value("string"),
|
| 23 |
+
"url": datasets.Value("string"),
|
| 24 |
+
"dates": datasets.Value("string"),
|
| 25 |
+
"classes": datasets.Value("string"),
|
| 26 |
+
}
|
| 27 |
+
),
|
| 28 |
+
supervised_keys=None,
|
| 29 |
+
citation=_CITATION,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
def _split_generators(self, dl_manager):
|
| 33 |
+
data_dir = dl_manager.download_and_extract("data")
|
| 34 |
+
return [
|
| 35 |
+
datasets.SplitGenerator(
|
| 36 |
+
name=datasets.Split.TRAIN,
|
| 37 |
+
gen_kwargs={"filepath": f"{data_dir}/train.csv"},
|
| 38 |
+
),
|
| 39 |
+
datasets.SplitGenerator(
|
| 40 |
+
name=datasets.Split.VALIDATION,
|
| 41 |
+
gen_kwargs={"filepath": f"{data_dir}/val.csv"},
|
| 42 |
+
),
|
| 43 |
+
datasets.SplitGenerator(
|
| 44 |
+
name=datasets.Split.TEST,
|
| 45 |
+
gen_kwargs={"filepath": f"{data_dir}/test.csv"},
|
| 46 |
+
),
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
def _generate_examples(self, filepath):
|
| 50 |
+
with open(filepath, encoding="utf-8") as f:
|
| 51 |
+
reader = csv.DictReader(f)
|
| 52 |
+
for i, row in enumerate(reader):
|
| 53 |
+
yield i, row
|