--- language: - en task_categories: - audio-to-audio - automatic-speech-recognition - audio-classification license: cc-by-nc-4.0 tags: - audio - rir - acoustics - dereverberation - robust-asr - simulation - room-acoustics --- ## πŸ”– How to Cite If RIR-Mega helps your research, please cite both the paper and the dataset: Paper Goswami, M. (2025). RIR-Mega: A Large-Scale Room Impulse Response Corpus with Benchmarks for Industrial and Building Acoustics. arXiv:2510.18917. https://arxiv.org/abs/2510.18917 Dataset Goswami, M. (2025). RIR-Mega Dataset (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.17387402 ``` @misc{goswami2025rirmega, title = {RIR-Mega: A Large-Scale Room Impulse Response Corpus with Benchmarks for Industrial and Building Acoustics}, author = {Goswami, Mandip}, year = {2025}, eprint = {2510.18917}, archivePrefix= {arXiv}, primaryClass = {cs.SD}, url = {https://arxiv.org/abs/2510.18917} } @dataset{goswami_2025_rirmega_zenodo, author = {Goswami, Mandip}, title = {RIR-Mega Dataset}, year = {2025}, publisher = {Zenodo}, version = {v1.0.0}, doi = {10.5281/zenodo.17387402}, url = {https://doi.org/10.5281/zenodo.17387402} } ``` ```bash Goswami, M. (2025). RIR-Mega: A Large-Scale Room Impulse Response Corpus with Benchmarks for Industrial and Building Acoustics. arXiv:2510.18917. https://arxiv.org/abs/2510.18917 Goswami, M. (2025). RIR-Mega Dataset (v1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17387402 ``` # RIR-Mega [Paper](https://huggingface.co/papers/2510.18917) | [Code](https://github.com/mandip42/rirmega) | [Project page (Zenodo)](https://doi.org/10.5281/zenodo.17387402) RIR-Mega provides thousands of simulated room impulse responses for research in dereverberation, robust speech recognition, and acoustic scene analysis. This Hugging Face release hosts a lightweight, representative subset β€” 1 000 linear-array and 3 000 circular-array RIRs β€” for quick exploration, tutorials, and reproducible baselines. The complete 50 000-RIR archive is permanently preserved on Zenodo and described in the accompanying paper: πŸ€— Subset for streaming: (https://huggingface.co/datasets/mandipgoswami/rirmega) πŸ“¦ Technical Paper: ([arxiv.org/abs/2510.18917](https://doi.org/10.48550/arXiv.2510.18917)) ## ✨ What’s inside - `data/` β€” RIR audio and `metadata/metadata.csv` (compact schema) - `rirmega/dataset.py` β€” Hugging Face Datasets loader - `benchmarks/rt60_regression/` β€” a lightweight RT60 regression baseline - `scripts/` β€” utilities (validation, checksums, mini subset) - *(optional)* `data-mini/` β€” tiny subset for quick demos and Spaces ## Contents | Folder | Description | | ----------------------------------------- | ------------------------------------------------------------------------------ | | `data/audio/linear` | 1 000 RIRs simulated for linear microphone arrays | | `data/audio/circular` | 3 000 RIRs simulated for circular arrays | | `data/metadata/metadata.csv` / `.parquet` | Compact schema linking each file to acoustic metrics and simulation parameters | | `rirmega/dataset.py` | Hugging Face Datasets loader (supports streaming) | | `benchmarks/rt60_regression/` | Baseline RT60 regression example | | `scripts/` | Validation + checksum utilities | | `figs/` | Overview and validation plots for reference | ## πŸ“¦ Schema (compact) | Column | Meaning | | -------------------------------------- | ----------------------------------------------------------------------------- | | `id` | unique identifier | | `family` | β€œlinear” or β€œcircular” | | `split` | train / valid / test | | `fs` | sampling rate (Hz) | | `wav` | relative path to audio file | | `room_size`, `absorption`, `max_order` | simulation parameters | | `metrics` | JSON string with `rt60`, `drr_db`, `c50_db`, `c80_db`, and band-limited RT60s | | `rng_seed` | random seed for reproducibility | ## πŸš€ Getting started ```bash from datasets import load_dataset ds = load_dataset("mandipgoswami/rirmega", trust_remote_code=True) print(ds["train"][0]["audio"]) # lazy-loads waveform print(ds["train"][0]["rt60"]) # scalar metadata ``` ## For streaming or partial download: ```bash ds = load_dataset("mandipgoswami/rirmega", streaming=True) ``` ## πŸ§ͺ Baseline: RT60 regression Lightweight features + RandomForest to predict RT60-like targets from RIR signals. ```bash python benchmarks/rt60_regression/train_rt60.py ``` ```bash pip install soundfile numpy pandas scikit-learn python benchmarks/rt60_regression/train_rt60.py # or choose a specific target key present in `metrics` python benchmarks/rt60_regression/train_rt60.py --target rt60 ``` **Default target search order:** ## Technical Validation A random subset of 1 000 samples was analyzed for internal consistency. The RT60 values derived from Schroeder energy decay curves correlated strongly with the metadata values: | Metric | Correlation | MAE (s) | RMSE (s) | | ---------------------- | ----------- | ------- | -------- | | RT60 (metadata vs EDC) | 0.96 | 0.013 | 0.022 | ### Reference numbers (example) - Train/Valid used: 36,000 / 4,000 (auto 10% valid) - Metric: MAE = **0.013 s**, RMSE = **0.022 s** (auto target) ## πŸ… Leaderboard (RT60 regression) | Date | Team / Author | Method | Target | Train/Valid | MAE (s) | RMSE (s) | Seed | Code | |---|---|---|---|---|---:|---:|---:|---| | 2025-10-19 | Baseline (RIR-Mega) | RF on light feats | auto | 36k / 4k | 0.013 | 0.022 | 0 | `benchmarks/rt60_regression` | > πŸ“« **Submit a result:** Open a PR adding a row (see **Submitting**). ## πŸ“€ Submitting See **SUBMITTING.md** for rules and a PR template. Minimum info: - Command (incl. `--target` if used), seed, dataset tag (e.g., `v1.0.0`) - Train/Valid sizes used - MAE (s) and RMSE (s) - Link to code (repo, gist, or HF Space)