File size: 8,826 Bytes
4e86645
c955829
00f08a5
2cab0c6
00f08a5
 
 
 
 
 
 
 
b778147
4e58a6e
 
 
 
 
 
 
 
 
 
 
00f08a5
 
 
ea33bfd
00f08a5
ea33bfd
00f08a5
 
ea33bfd
00f08a5
ea33bfd
081dd2f
ea33bfd
 
 
081dd2f
ea33bfd
081dd2f
ea33bfd
68d69ad
ea33bfd
68d69ad
 
081dd2f
6dd50ae
081dd2f
ea33bfd
 
 
081dd2f
ea33bfd
68d69ad
ea33bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
081dd2f
 
 
ea33bfd
 
081dd2f
ea33bfd
 
1acbf18
 
 
 
 
 
 
 
 
b1602cb
 
c955829
6b38da8
 
 
 
156fefd
1acbf18
 
 
 
 
 
 
 
 
 
 
 
825c5cd
1acbf18
7ba5ff2
825c5cd
 
 
 
 
1acbf18
 
 
825c5cd
 
1acbf18
825c5cd
6dd50ae
825c5cd
 
 
 
6dd50ae
825c5cd
 
 
1acbf18
 
 
 
 
 
 
 
 
 
 
571c02b
1acbf18
 
 
 
 
 
825c5cd
1acbf18
 
 
 
 
 
 
bb940c1
1acbf18
 
6dd50ae
1acbf18
 
 
 
bb940c1
1acbf18
bb940c1
6dd50ae
 
1acbf18
 
2fd9128
1acbf18
 
9fbb694
1acbf18
 
0af1ca5
a5acbc8
 
 
7dbb4c9
 
 
0af1ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1acbf18
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
---
version: 1.1.0
language: en
license: mit
source_datasets: curated
task_categories:
- tabular-regression
tags:
- chemistry
- cheminformatics
pretty_name: Aqueous Solubility Database (AqSolDB)
dataset_summary: >-
  AqsolDB contains solubility data for 9,982 unique compounds, curated from nine publicly available aqueous solubility datasets.
citation: >-
  @article{
    author = {Murat Cihan Sorkun, Abhishek Khetan \& Süleyman Er},
    title = {AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds},
    journal = {Scientific Data},
    year = {2019},
    volume = {6},
    number = {143},
    month = {aug},
    url = {https://www.nature.com/articles/s41597-019-0151-1},
    publisher = {Springer Nature}
size_categories:
- 1K<n<10K
config_names:
- AqSolDB
configs:
- config_name: AqSolDB
  data_files:
  - split: test
    path: AqSolDB/test.csv
  - split: train
    path: AqSolDB/train.csv
dataset_info:
- config_name: AqSolDB
  features:    
    - name: "ID"
      dtype: string
    - name: "Name"
      dtype: string
    - name: "InChI"
      dtype: string
    - name: "InChIKey"
      dtype: string
    - name: "SMILES"
      dtype: string
    - name: "Y"
      dtype: float64
    - name: "SD"
      dtype: float64
    - name: "Ocurrences"
      dtype: int64
    - name: "Group"
      dtype: string
    - name: "MolWt"
      dtype: float64
    - name: "MolLogP"
      dtype: float64
    - name: "MolMR"
      dtype: float64
    - name: "HeavyAtomCount"
      dtype: float64
    - name: "NumHAcceptors"
      dtype: float64
    - name: "NumHDonors"
      dtype: float64
    - name: "NumHeteroatoms"
      dtype: float64
    - name: "NumRotatableBonds"
      dtype: float64
    - name: "NumValenceElectrons"
      dtype: float64
    - name: "NumAromaticRings"
      dtype: float64
    - name: "NumSaturatedRings"
      dtype: float64
    - name: "NumAliphaticRings"
      dtype: float64
    - name: "RingCount"
      dtype: float64
    - name: "TPSA"
      dtype: float64
    - name: "LabuteASA"
      dtype: float64
    - name: "BalabanJ"
      dtype: float64
    - name: "BertzCT"
      dtype: float64
    - name: "ClusterNo"
      dtype: int64
    - name: "MolCount"
      dtype: int64
    - name: "group"
      dtype: string
  splits:
    - name: train
      num_bytes: 1737344
      num_examples: 7488
    - name: test
      num_bytes: 578736
      num_examples: 2494
---

# Aqueous Solubility Database (AqSolDB)

AqSolDB is created by the Autonomous Energy Materials Discovery [AMD] research group, consists of aqueous solubility values of 
9,982 unique compounds curated from 9 different publicly available aqueous solubility datasets. This openly accessible dataset, 
which is the largest of its kind, and will not only serve as a useful reference source of measured solubility data, but also 
as a much improved and generalizable training data source for building data-driven models.

This is a mirror of the [official Github repo](https://github.com/mcsorkun/AqSolDB) where the dataset was uploaded in 2019.

[Updates 2025.08.01 - version 1.1.0]
Replaced invalid SMILES strings that could not be parsed by RDKit with valid SMILES.
- 'CC1=[C-]C=C[NH+2]([O-])C1' -> 'Cc1ccc[n+]([O-])c1'
- 'O=C([O-])C1=C[NH+2]([O-])CC=C1' -> 'O=C(O)c1ccc[n+]([O-])c1'


## Quickstart Usage

### Load a dataset in python
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library

    $ pip install datasets

then, from within python load the datasets library

    >>> import datasets
   
and load one of the `AqSolDB` datasets, e.g.,

    >>> AqSolDB = datasets.load_dataset("maomlab/AqSolDB", name = "AqSolDB")
    Downloading readme: 100%|████████████████████| 10.2k/10.2k [00:00<00:00, 4.41MB/s]
    Downloading data: 100%|█████████████████████████| 972k/972k [00:02<00:00, 432kB/s]
    Downloading data: 100%|██████████████████████| 2.88M/2.88M [00:01<00:00, 1.92MB/s]
    Generating test split: 100%|████████| 2494/2494 [00:00<00:00, 44727.48 examples/s]
    Generating train split: 100%|██████| 7488/7488 [00:00<00:00, 144316.82 examples/s]

and inspecting the loaded dataset

    >>> AqSolDB
    AqSolDB
    DatasetDict({
        test: Dataset({
            features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\
    ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'],
            num_rows: 2494
        })
        train: Dataset({
            features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\
    ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'],
            num_rows: 7488
        })
    })

### Use a dataset to train a model
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support

    pip install 'molflux[catboost,rdkit]'

then load, featurize, split, fit, and evaluate the catboost model

    import json
    from datasets import load_dataset
    from molflux.datasets import featurise_dataset
    from molflux.features import load_from_dicts as load_representations_from_dicts
    from molflux.splits import load_from_dict as load_split_from_dict
    from molflux.modelzoo import load_from_dict as load_model_from_dict
    from molflux.metrics import load_suite
    
    split_dataset = load_dataset('maomlab/AqSolDB')
    
    split_featurised_dataset = featurise_dataset(
      split_dataset,
      column = "SMILES",
      representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))

    model = load_model_from_dict({
        "name": "cat_boost_regressor",
        "config": {
            "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
            "y_features": ['Y']}})
    
    model.train(split_featurised_dataset["train"])
    preds = model.predict(split_featurised_dataset["test"])
    
    regression_suite = load_suite("regression")
    
    scores = regression_suite.compute(
        references=split_featurised_dataset["test"]['Y'],
        predictions=preds["cat_boost_regressor::Y"])    


## Aqueous Solubility Database

### Data splits
The original AqSoDB dataset does not define splits, so here we have used the `Realistic Split` method described
in [(Martin et al., 2018)](https://doi.org/10.1021/acs.jcim.7b00166).

### Citation
  TY  - JOUR
  AU  - Sorkun, Murat Cihan
  AU  - Khetan, Abhishek
    AU  - Er, S√ºleyman
    PY  - 2019
    DA  - 2019/08/08
TI  - AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds
JO  - Scientific Data
SP  - 143
VL  - 6
IS  - 1
AB  - Water is a ubiquitous solvent in chemistry and life. 
It is therefore no surprise that the aqueous solubility of compounds has a key role in various domains, 
including but not limited to drug discovery, paint, coating, and battery materials design. 
Measurement and prediction of aqueous solubility is a complex and prevailing challenge in chemistry. 
For the latter, different data-driven prediction models have recently been developed to augment the physics-based modeling approaches. 
To construct accurate data-driven estimation models, it is essential that the underlying experimental calibration data used by these models is of high fidelity and quality.
Existing solubility datasets show variance in the chemical space of compounds covered, measurement methods, experimental conditions, 
but also in the non-standard representations, size, and accessibility of data. 
To address this problem, we generated a new database of compounds, AqSolDB, by merging a total of nine different aqueous solubility datasets, 
curating the merged data, standardizing and validating the compound representation formats, marking with reliability labels, and providing 2D descriptors of compounds as a Supplementary Resource.
SN  - 2052-4463
UR  - https://doi.org/10.1038/s41597-019-0151-1
DO  - 10.1038/s41597-019-0151-1
ID  - Sorkun2019
ER  - 
```