Datasets:
File size: 8,826 Bytes
4e86645 c955829 00f08a5 2cab0c6 00f08a5 b778147 4e58a6e 00f08a5 ea33bfd 00f08a5 ea33bfd 00f08a5 ea33bfd 00f08a5 ea33bfd 081dd2f ea33bfd 081dd2f ea33bfd 081dd2f ea33bfd 68d69ad ea33bfd 68d69ad 081dd2f 6dd50ae 081dd2f ea33bfd 081dd2f ea33bfd 68d69ad ea33bfd 081dd2f ea33bfd 081dd2f ea33bfd 1acbf18 b1602cb c955829 6b38da8 156fefd 1acbf18 825c5cd 1acbf18 7ba5ff2 825c5cd 1acbf18 825c5cd 1acbf18 825c5cd 6dd50ae 825c5cd 6dd50ae 825c5cd 1acbf18 571c02b 1acbf18 825c5cd 1acbf18 bb940c1 1acbf18 6dd50ae 1acbf18 bb940c1 1acbf18 bb940c1 6dd50ae 1acbf18 2fd9128 1acbf18 9fbb694 1acbf18 0af1ca5 a5acbc8 7dbb4c9 0af1ca5 1acbf18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
version: 1.1.0
language: en
license: mit
source_datasets: curated
task_categories:
- tabular-regression
tags:
- chemistry
- cheminformatics
pretty_name: Aqueous Solubility Database (AqSolDB)
dataset_summary: >-
AqsolDB contains solubility data for 9,982 unique compounds, curated from nine publicly available aqueous solubility datasets.
citation: >-
@article{
author = {Murat Cihan Sorkun, Abhishek Khetan \& Süleyman Er},
title = {AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds},
journal = {Scientific Data},
year = {2019},
volume = {6},
number = {143},
month = {aug},
url = {https://www.nature.com/articles/s41597-019-0151-1},
publisher = {Springer Nature}
size_categories:
- 1K<n<10K
config_names:
- AqSolDB
configs:
- config_name: AqSolDB
data_files:
- split: test
path: AqSolDB/test.csv
- split: train
path: AqSolDB/train.csv
dataset_info:
- config_name: AqSolDB
features:
- name: "ID"
dtype: string
- name: "Name"
dtype: string
- name: "InChI"
dtype: string
- name: "InChIKey"
dtype: string
- name: "SMILES"
dtype: string
- name: "Y"
dtype: float64
- name: "SD"
dtype: float64
- name: "Ocurrences"
dtype: int64
- name: "Group"
dtype: string
- name: "MolWt"
dtype: float64
- name: "MolLogP"
dtype: float64
- name: "MolMR"
dtype: float64
- name: "HeavyAtomCount"
dtype: float64
- name: "NumHAcceptors"
dtype: float64
- name: "NumHDonors"
dtype: float64
- name: "NumHeteroatoms"
dtype: float64
- name: "NumRotatableBonds"
dtype: float64
- name: "NumValenceElectrons"
dtype: float64
- name: "NumAromaticRings"
dtype: float64
- name: "NumSaturatedRings"
dtype: float64
- name: "NumAliphaticRings"
dtype: float64
- name: "RingCount"
dtype: float64
- name: "TPSA"
dtype: float64
- name: "LabuteASA"
dtype: float64
- name: "BalabanJ"
dtype: float64
- name: "BertzCT"
dtype: float64
- name: "ClusterNo"
dtype: int64
- name: "MolCount"
dtype: int64
- name: "group"
dtype: string
splits:
- name: train
num_bytes: 1737344
num_examples: 7488
- name: test
num_bytes: 578736
num_examples: 2494
---
# Aqueous Solubility Database (AqSolDB)
AqSolDB is created by the Autonomous Energy Materials Discovery [AMD] research group, consists of aqueous solubility values of
9,982 unique compounds curated from 9 different publicly available aqueous solubility datasets. This openly accessible dataset,
which is the largest of its kind, and will not only serve as a useful reference source of measured solubility data, but also
as a much improved and generalizable training data source for building data-driven models.
This is a mirror of the [official Github repo](https://github.com/mcsorkun/AqSolDB) where the dataset was uploaded in 2019.
[Updates 2025.08.01 - version 1.1.0]
Replaced invalid SMILES strings that could not be parsed by RDKit with valid SMILES.
- 'CC1=[C-]C=C[NH+2]([O-])C1' -> 'Cc1ccc[n+]([O-])c1'
- 'O=C([O-])C1=C[NH+2]([O-])CC=C1' -> 'O=C(O)c1ccc[n+]([O-])c1'
## Quickstart Usage
### Load a dataset in python
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library
$ pip install datasets
then, from within python load the datasets library
>>> import datasets
and load one of the `AqSolDB` datasets, e.g.,
>>> AqSolDB = datasets.load_dataset("maomlab/AqSolDB", name = "AqSolDB")
Downloading readme: 100%|████████████████████| 10.2k/10.2k [00:00<00:00, 4.41MB/s]
Downloading data: 100%|█████████████████████████| 972k/972k [00:02<00:00, 432kB/s]
Downloading data: 100%|██████████████████████| 2.88M/2.88M [00:01<00:00, 1.92MB/s]
Generating test split: 100%|████████| 2494/2494 [00:00<00:00, 44727.48 examples/s]
Generating train split: 100%|██████| 7488/7488 [00:00<00:00, 144316.82 examples/s]
and inspecting the loaded dataset
>>> AqSolDB
AqSolDB
DatasetDict({
test: Dataset({
features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\
ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'],
num_rows: 2494
})
train: Dataset({
features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\
ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'],
num_rows: 7488
})
})
### Use a dataset to train a model
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support
pip install 'molflux[catboost,rdkit]'
then load, featurize, split, fit, and evaluate the catboost model
import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite
split_dataset = load_dataset('maomlab/AqSolDB')
split_featurised_dataset = featurise_dataset(
split_dataset,
column = "SMILES",
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
model = load_model_from_dict({
"name": "cat_boost_regressor",
"config": {
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
"y_features": ['Y']}})
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])
regression_suite = load_suite("regression")
scores = regression_suite.compute(
references=split_featurised_dataset["test"]['Y'],
predictions=preds["cat_boost_regressor::Y"])
## Aqueous Solubility Database
### Data splits
The original AqSoDB dataset does not define splits, so here we have used the `Realistic Split` method described
in [(Martin et al., 2018)](https://doi.org/10.1021/acs.jcim.7b00166).
### Citation
TY - JOUR
AU - Sorkun, Murat Cihan
AU - Khetan, Abhishek
AU - Er, Süleyman
PY - 2019
DA - 2019/08/08
TI - AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds
JO - Scientific Data
SP - 143
VL - 6
IS - 1
AB - Water is a ubiquitous solvent in chemistry and life.
It is therefore no surprise that the aqueous solubility of compounds has a key role in various domains,
including but not limited to drug discovery, paint, coating, and battery materials design.
Measurement and prediction of aqueous solubility is a complex and prevailing challenge in chemistry.
For the latter, different data-driven prediction models have recently been developed to augment the physics-based modeling approaches.
To construct accurate data-driven estimation models, it is essential that the underlying experimental calibration data used by these models is of high fidelity and quality.
Existing solubility datasets show variance in the chemical space of compounds covered, measurement methods, experimental conditions,
but also in the non-standard representations, size, and accessibility of data.
To address this problem, we generated a new database of compounds, AqSolDB, by merging a total of nine different aqueous solubility datasets,
curating the merged data, standardizing and validating the compound representation formats, marking with reliability labels, and providing 2D descriptors of compounds as a Supplementary Resource.
SN - 2052-4463
UR - https://doi.org/10.1038/s41597-019-0151-1
DO - 10.1038/s41597-019-0151-1
ID - Sorkun2019
ER -
```
|