|
"problem": "例1. 设集合 $M=\\left\\{x |{\\frac{a x-5}{x^{2}-a}}<0,\\,x\\in\\mathbb{R}\\right\\}$ \n(1)当 $a=4$ 时,化简集合 $M$ ;\n(2)若 $3\\in M,$ ,且 $5\\notin M,$ 求实数a的取值范围.", |
|
"solution": "分析: 化简集合 $M$, 实际上就是解不等式 ${\\frac{a x-5}{x^{2}-a}}<0.$ \n解: (1) 当 $a=4$ 时,有\n$$\n{\\frac{4x-5}{x^{2}-4}}<0\\,, \n$$\n即\n$$\n\\left(x-\\frac{5}{4}\\right)(x+2)(x-2)<0. \n$$\n$x<-2$ 或 ${\\frac{5}{4}}<x<2.$ \n所以 $M=(-\\infty,-2)\\cup\\bigl({\\frac{5}{4}}, 2\\bigr).$ \n(2)由 $3\\in M,$ 得 ${\\frac{3a-5}{3^{2}-a}}<0$,即 $\\left(a-\\frac{5}{3}\\right)(a-9)\\geqslant0$ ,所以\n$$\na<{\\frac{5}{3}}或a>9. \n$$\n由 $5\\notin M$ 得, ${\\frac{5a-5}{5^{2}-a}}\\geqslant0$ 或 $5^{2}-a=0$ ,所以\n$$\n1\\leq a\\leq25. \n$$\n可得 $x\\in\\left[1,{\\frac{5}{3}}\\right)\\cup\\left(9,25\\right]$.\n说明: $5\\notin M$ 隐含了条件 $5^{2}-a=$ 0,这是容易被忽视的.\n由概括原则我们知道,判断一个对象 $x$ 是否为集合 $S$ 的元素,等价于判断 $x$ 是否具有性质 $P$.", |