--- dataset_info: features: - name: shape dtype: string - name: background_color dtype: string - name: image dtype: image - name: metadata dtype: string splits: - name: regular_polygons num_bytes: 3950491.492 num_examples: 1948 - name: regular_polygon_pairs num_bytes: 17922128.490000002 num_examples: 5090 - name: abstract_shapes num_bytes: 1522583.0 num_examples: 403 - name: heptagons_with_visual_cues num_bytes: 6340402.2 num_examples: 1400 - name: arrow_on_plus_with_visual_cues num_bytes: 9327783.92 num_examples: 1540 download_size: 26192011 dataset_size: 39063389.102 configs: - config_name: default data_files: - split: regular_polygons path: data/regular_polygons-* - split: regular_polygon_pairs path: data/regular_polygon_pairs-* - split: abstract_shapes path: data/abstract_shapes-* - split: heptagons_with_visual_cues path: data/heptagons_with_visual_cues-* - split: arrow_on_plus_with_visual_cues path: data/arrow_on_plus_with_visual_cues-* task_categories: - image-classification library_name: - pytorch --- # Forgotten Polygons: Multimodal Large Language Models are Shape-Blind This dataset is part of the work **"Forgotten Polygons: Multimodal Large Language Models are Shape-Blind"**. 📖 **[Read the Paper](https://www.arxiv.org/abs/2502.15969)** 💾 **[GitHub Repository](https://github.com/rsinghlab/Shape-Blind/tree/main)** ## Overview This dataset is designed to evaluate the shape understanding capabilities of Multimodal Large Language Models (MLLMs). ## Dataset Splits Each split corresponds to a different reasoning task and shape identification challenge. ### 🟢 **Regular Polygons (`regular_polygons`)** - Task: **Shape Identification & Sides Counting** - Description: Consists of images of **regular polygons** (e.g., triangles, pentagons, hexagons, etc.). - Example Queries: - *"What shape is in the image?"* - *"How many sides does the shape in the image have?"* ### 🟡 **Regular Polygon Pairs (`regular_polygon_pairs`)** - Task: **Multi-Shape Reasoning** - Description: Images contain **two distinct polygons**. The task involves **identifying both shapes, counting their sides, and summing the total**. - Example Query: - *"What are the two shapes in the image, and how many sides do they have in total?"* ### 🔵 **Abstract Shapes (`abstract_shapes`)** - Task: **Complex Shape Recognition** - Description: Features **irregular and merged polygons**, stars, arrows, and abstract geometric figures. - Example Query: - *"How many sides does this shape have?"* ### 🟣 **Heptagons with Visual Cues (`heptagons_with_visual_cues`)** - Task: **Visually-Cued Chain-of-Thought (VC-CoT) Reasoning** - Description: Evaluates **VC-CoT prompting** by annotating it with **visual cues** on top of heptagon images. - We chose heptagons because it was the most difficult regular polygon for MLLMs. - The annotations range from ordered numbers and letters, to random numbers and letters. - Example Query: - *"Observe the shape and list the numbers you see. How many sides does the shape have?"* ### 🔴 **Arrow on Plus with Visual Cues (`arrow_on_plus_with_visual_cues`)** - Task: **VC-CoT with Alternative Visual Cues** - Description: Similar to the **heptagons_with_visual_cues** split but using **arrow-on-plus shapes** instead. - Example Query: - *"Count the total number of numbers associated with the shape’s sides."* ## Citation If you use this dataset, please cite: > Forgotten Polygons: Multimodal Large Language Models are Shape-Blind > [Arxiv: 2502.15969](https://www.arxiv.org/abs/2502.15969)