Datasets:
Tasks:
Object Detection
Modalities:
Image
Languages:
English
Size:
100K<n<1M
Tags:
Multi-Object-Tracking
License:
File size: 9,530 Bytes
6dff8f9 a56f151 6dff8f9 a56f151 6dff8f9 a56f151 6dff8f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
---
license: apache-2.0
task_categories:
- object-detection
language:
- en
tags:
- Multi-Object-Tracking
pretty_name: HardTracksDataset
size_categories:
- 100K<n<1M
---
# HardTracksDataset: A Benchmark for Robust Object Tracking under Heavy Occlusion and Challenging Conditions
[Computer Vision Lab, ETH Zurich](https://vision.ee.ethz.ch/)

## Introduction
We introduce the HardTracksDataset (HTD), a novel multi-object tracking (MOT) benchmark specifically designed to address two critical
limitations prevalent in existing tracking datasets. First, most current MOT benchmarks narrowly focus on restricted scenarios, such as
pedestrian movements, dance sequences, or autonomous driving environments, thus lacking the object diversity and scenario complexity
representative of real-world conditions. Second, datasets featuring broader vocabularies, such as, OVT-B and TAO, typically do not sufficiently emphasize challenging scenarios involving long-term occlusions, abrupt appearance changes, and significant position variations. As a consequence, the majority of tracking instances evaluated are relatively easy, obscuring trackersβ limitations on truly challenging cases. HTD addresses these gaps by curating a challenging subset of scenarios from existing datasets, explicitly combining large vocabulary diversity with severe visual challenges. By emphasizing difficult tracking scenarios, particularly long-term occlusions and substantial appearance shifts, HTD provides a focused benchmark aimed at fostering the development of more robust and reliable tracking algorithms for complex real-world situations.
## Results of state of the art trackers on HTD
<table>
<thead>
<tr>
<th rowspan="2">Method</th>
<th colspan="4">Validation</th>
<th colspan="4">Test</th>
</tr>
<tr>
<th>TETA</th>
<th>LocA</th>
<th>AssocA</th>
<th>ClsA</th>
<th>TETA</th>
<th>LocA</th>
<th>AssocA</th>
<th>ClsA</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="9"><em>Motion-based</em></td>
</tr>
<tr>
<td>ByteTrack</td>
<td>34.877</td>
<td>54.624</td>
<td>19.085</td>
<td>30.922</td>
<td>37.875</td>
<td>56.135</td>
<td>19.464</td>
<td>38.025</td>
</tr>
<tr>
<td>DeepSORT</td>
<td>33.782</td>
<td>57.350</td>
<td>15.009</td>
<td>28.987</td>
<td>37.099</td>
<td>58.766</td>
<td>15.729</td>
<td>36.803</td>
</tr>
<tr>
<td>OCSORT</td>
<td>33.012</td>
<td>57.599</td>
<td>12.558</td>
<td>28.880</td>
<td>35.164</td>
<td>59.117</td>
<td>11.549</td>
<td>34.825</td>
</tr>
<tr>
<td colspan="9"><em>Appearance-based</em></td>
</tr>
<tr>
<td>MASA</td>
<td>42.246</td>
<td>60.260</td>
<td>34.241</td>
<td>32.237</td>
<td>43.656</td>
<td>60.125</td>
<td>31.454</td>
<td><strong>39.390</strong></td>
</tr>
<tr>
<td>OV-Track</td>
<td>29.179</td>
<td>47.393</td>
<td>25.758</td>
<td>14.385</td>
<td>33.586</td>
<td>51.310</td>
<td>26.507</td>
<td>22.941</td>
</tr>
<tr>
<td colspan="9"><em>Transformer-based</em></td>
</tr>
<tr>
<td>OVTR</td>
<td>26.585</td>
<td>44.031</td>
<td>23.724</td>
<td>14.138</td>
<td>29.771</td>
<td>46.338</td>
<td>24.974</td>
<td>21.643</td>
</tr>
<tr>
<td colspan="9"></td>
</tr>
<tr>
<td><strong>MASA+</strong></td>
<td><strong>42.716</strong></td>
<td><strong>60.364</strong></td>
<td><strong>35.252</strong></td>
<td><strong>32.532</strong></td>
<td><strong>44.063</strong></td>
<td><strong>60.319</strong></td>
<td><strong>32.735</strong></td>
<td>39.135</td>
</tr>
</tbody>
</table>
## Download Instructions
To download the dataset you can use the HuggingFace CLI.
First install the HuggingFace CLI according to the official [HuggingFace documentation](https://huggingface.co/docs/huggingface_hub/main/guides/cli)
and login with your HuggingFace account. Then, you can download the dataset using the following command:
```bash
huggingface-cli download mscheidl/htd --repo-type dataset --local-dir htd
```
The video folders are provided as zip files. Before usage please unzip the files. You can use the following command to unzip all files in the `data` folder.
Please note that the unzipping process can take a while (especially for _TAO.zip_)
```bash
cd htd
for z in data/*.zip; do (unzip -o -q "$z" -d data && echo "Unzipped: $z") & done; wait; echo "β
Done"
mkdir -p data/zips # create a folder for the zip files
mv data/*.zip data/zips/ # move the zip files to the zips folder
```
The dataset is organized in the following structure:
```
βββ htd
βββ data
βββ AnimalTrack
βββ BDD
βββ ...
βββ annotations
βββ classes.txt
βββ hard_tracks_dataset_coco_test.json
βββ hard_tracks_dataset_coco_val.json
βββ ...
βββ metadata
βββ lvis_v1_clip_a+cname.npy
βββ lvis_v1_train_cat_info.json
```
The `data` folder contains the videos, the `annotations` folder contains the annotations in COCO (TAO) format, and the `metadata` folder contains the metadata files for running MASA+.
If you use HTD independently, you can ignore the `metadata` folder.
## Annotation format for HTD dataset
The annotations folder is structured as follows:
```
βββ annotations
βββ classes.txt
βββ hard_tracks_dataset_coco_test.json
βββ hard_tracks_dataset_coco_val.json
βββ hard_tracks_dataset_coco.json
βββ hard_tracks_dataset_coco_class_agnostic.json
```
Details about the annotations:
- `classes.txt`: Contains the list of classes in the dataset. Useful for Open-Vocabulary tracking.
- `hard_tracks_dataset_coco_test.json`: Contains the annotations for the test set.
- `hard_tracks_dataset_coco_val.json`: Contains the annotations for the validation set.
- `hard_tracks_dataset_coco.json`: Contains the annotations for the entire dataset.
- `hard_tracks_dataset_coco_class_agnostic.json`: Contains the annotations for the entire dataset in a class-agnostic format. This means that there is only one category namely "object" and all the objects in the dataset are assigned to this category.
The HTD dataset is annotated in COCO format. The annotations are stored in JSON files, which contain information about the images, annotations, categories, and other metadata.
The format of the annotations is as follows:
````python
{
"images": [image],
"videos": [video],
"tracks": [track],
"annotations": [annotation],
"categories": [category]
}
image: {
"id": int, # Unique ID of the image
"video_id": int, # Reference to the parent video
"file_name": str, # Path to the image file
"width": int, # Image width in pixels
"height": int, # Image height in pixels
"frame_index": int, # Index of the frame within the video (starting from 0)
"frame_id": int # Redundant or external frame ID (optional alignment)
"video": str, # Name of the video
"neg_category_ids": [int], # List of category IDs explicitly not present (optional)
"not_exhaustive_category_ids": [int] # Categories not exhaustively labeled in this image (optional)
video: {
"id": int, # Unique video ID
"name": str, # Human-readable or path-based name
"width": int, # Frame width
"height": int, # Frame height
"neg_category_ids": [int], # List of category IDs explicitly not present (optional)
"not_exhaustive_category_ids": [int] # Categories not exhaustively labeled in this video (optional)
"frame_range": int, # Number of frames between annotated frames
"metadata": dict, # Metadata for the video
}
track: {
"id": int, # Unique track ID
"category_id": int, # Object category
"video_id": int # Associated video
}
category: {
"id": int, # Unique category ID
"name": str, # Human-readable name of the category
}
annotation: {
"id": int, # Unique annotation ID
"image_id": int, # Image/frame ID
"video_id": int, # Video ID
"track_id": int, # Associated track ID
"bbox": [x, y, w, h], # Bounding box in absolute pixel coordinates
"area": float, # Area of the bounding box
"category_id": int # Category of the object
"iscrowd": int, # Crowd flag (from COCO)
"segmentation": [], # Polygon-based segmentation (if available)
"instance_id": int, # Instance index with a video
"scale_category": str # Scale type (e.g., 'moving-object')
}
```` |