Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
Japanese
Size:
< 1K
License:
File size: 4,354 Bytes
ce6d2a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
#!/usr/bin/env python3
import pandas as pd
import random
from pathlib import Path
def create_sample_dataset():
# Load original data
base_path = Path("/Users/fodizoltan/Projects/toptal/voyageai/tmp/rteb/data/JapaneseCode1Retrieval")
corpus_df = pd.read_parquet(base_path / "corpus" / "corpus-00000-of-00001.parquet")
queries_df = pd.read_parquet(base_path / "queries" / "queries-00000-of-00001.parquet")
qrels_df = pd.read_parquet(base_path / "data" / "test-00000-of-00001.parquet")
print(f"Loaded {len(corpus_df)} corpus docs, {len(queries_df)} queries, {len(qrels_df)} qrels")
# Get first 5 queries
first_5_queries = queries_df.head(5).copy()
print("First 5 queries:")
for _, row in first_5_queries.iterrows():
print(f" {row['_id']}: {row['text']}")
# Get related corpus documents from qrels
first_5_query_ids = first_5_queries['_id'].tolist()
related_qrels = qrels_df[qrels_df['query-id'].isin(first_5_query_ids)].copy()
related_corpus_ids = related_qrels['corpus-id'].unique()
related_corpus = corpus_df[corpus_df['_id'].isin(related_corpus_ids)].copy()
print(f"Found {len(related_corpus)} related corpus documents")
print(f"Found {len(related_qrels)} qrels")
# Tweak the data
tweaked_queries = tweak_queries(first_5_queries)
tweaked_corpus = tweak_corpus(related_corpus)
return tweaked_corpus, tweaked_queries, related_qrels
def tweak_queries(queries_df):
"""Tweak Japanese queries by changing a few words/characters"""
tweaked = queries_df.copy()
# Simple tweaks for Japanese text
tweaks = {
'リスト': 'リスト配列',
'要素': 'エレメント',
'整数': '数値',
'文字列': 'ストリング',
'変数': 'パラメータ',
'する': 'を行う',
'の': 'が持つ'
}
for idx, row in tweaked.iterrows():
text = row['text']
# Apply random tweaks
for old, new in tweaks.items():
if old in text and random.random() < 0.3: # 30% chance to apply each tweak
text = text.replace(old, new, 1) # Replace only first occurrence
tweaked.at[idx, 'text'] = text
return tweaked
def tweak_corpus(corpus_df):
"""Tweak Python code by changing variable names and some function calls"""
tweaked = corpus_df.copy()
# Simple code tweaks
code_tweaks = {
'x': 'data',
'i': 'idx',
'd': 'digit',
'enumerate': 'enumerate_items',
'sum': 'total',
'len': 'length',
'str': 'string',
'int': 'integer',
'list': 'array'
}
for idx, row in tweaked.iterrows():
text = row['text']
# Apply random tweaks
for old, new in code_tweaks.items():
if old in text and random.random() < 0.4: # 40% chance to apply each tweak
# Only replace whole words to avoid breaking code
import re
pattern = r'\b' + re.escape(old) + r'\b'
if re.search(pattern, text):
text = re.sub(pattern, new, text, count=1)
tweaked.at[idx, 'text'] = text
return tweaked
def save_sample_dataset(corpus_df, queries_df, qrels_df):
"""Save sample dataset in MTEB format"""
sample_path = Path("/Users/fodizoltan/Projects/toptal/voyageai/tmp/rteb/data/JapaneseCode1Retrieval-sample")
sample_path.mkdir(exist_ok=True)
# Create subdirectories
(sample_path / "corpus").mkdir(exist_ok=True)
(sample_path / "queries").mkdir(exist_ok=True)
(sample_path / "data").mkdir(exist_ok=True)
# Save parquet files
corpus_df.to_parquet(sample_path / "corpus" / "corpus-00000-of-00001.parquet", index=False)
queries_df.to_parquet(sample_path / "queries" / "queries-00000-of-00001.parquet", index=False)
qrels_df.to_parquet(sample_path / "data" / "test-00000-of-00001.parquet", index=False)
print(f"Sample dataset saved to {sample_path}")
print(f" - Corpus: {len(corpus_df)} documents")
print(f" - Queries: {len(queries_df)} queries")
print(f" - Qrels: {len(qrels_df)} relevance judgments")
if __name__ == "__main__":
corpus, queries, qrels = create_sample_dataset()
save_sample_dataset(corpus, queries, qrels) |