#!/usr/bin/env python3 import pandas as pd import random from pathlib import Path def create_sample_dataset(): # Load original data base_path = Path("/Users/fodizoltan/Projects/toptal/voyageai/tmp/rteb/data/JapaneseCode1Retrieval") corpus_df = pd.read_parquet(base_path / "corpus" / "corpus-00000-of-00001.parquet") queries_df = pd.read_parquet(base_path / "queries" / "queries-00000-of-00001.parquet") qrels_df = pd.read_parquet(base_path / "data" / "test-00000-of-00001.parquet") print(f"Loaded {len(corpus_df)} corpus docs, {len(queries_df)} queries, {len(qrels_df)} qrels") # Get first 5 queries first_5_queries = queries_df.head(5).copy() print("First 5 queries:") for _, row in first_5_queries.iterrows(): print(f" {row['_id']}: {row['text']}") # Get related corpus documents from qrels first_5_query_ids = first_5_queries['_id'].tolist() related_qrels = qrels_df[qrels_df['query-id'].isin(first_5_query_ids)].copy() related_corpus_ids = related_qrels['corpus-id'].unique() related_corpus = corpus_df[corpus_df['_id'].isin(related_corpus_ids)].copy() print(f"Found {len(related_corpus)} related corpus documents") print(f"Found {len(related_qrels)} qrels") # Tweak the data tweaked_queries = tweak_queries(first_5_queries) tweaked_corpus = tweak_corpus(related_corpus) return tweaked_corpus, tweaked_queries, related_qrels def tweak_queries(queries_df): """Tweak Japanese queries by changing a few words/characters""" tweaked = queries_df.copy() # Simple tweaks for Japanese text tweaks = { 'リスト': 'リスト配列', '要素': 'エレメント', '整数': '数値', '文字列': 'ストリング', '変数': 'パラメータ', 'する': 'を行う', 'の': 'が持つ' } for idx, row in tweaked.iterrows(): text = row['text'] # Apply random tweaks for old, new in tweaks.items(): if old in text and random.random() < 0.3: # 30% chance to apply each tweak text = text.replace(old, new, 1) # Replace only first occurrence tweaked.at[idx, 'text'] = text return tweaked def tweak_corpus(corpus_df): """Tweak Python code by changing variable names and some function calls""" tweaked = corpus_df.copy() # Simple code tweaks code_tweaks = { 'x': 'data', 'i': 'idx', 'd': 'digit', 'enumerate': 'enumerate_items', 'sum': 'total', 'len': 'length', 'str': 'string', 'int': 'integer', 'list': 'array' } for idx, row in tweaked.iterrows(): text = row['text'] # Apply random tweaks for old, new in code_tweaks.items(): if old in text and random.random() < 0.4: # 40% chance to apply each tweak # Only replace whole words to avoid breaking code import re pattern = r'\b' + re.escape(old) + r'\b' if re.search(pattern, text): text = re.sub(pattern, new, text, count=1) tweaked.at[idx, 'text'] = text return tweaked def save_sample_dataset(corpus_df, queries_df, qrels_df): """Save sample dataset in MTEB format""" sample_path = Path("/Users/fodizoltan/Projects/toptal/voyageai/tmp/rteb/data/JapaneseCode1Retrieval-sample") sample_path.mkdir(exist_ok=True) # Create subdirectories (sample_path / "corpus").mkdir(exist_ok=True) (sample_path / "queries").mkdir(exist_ok=True) (sample_path / "data").mkdir(exist_ok=True) # Save parquet files corpus_df.to_parquet(sample_path / "corpus" / "corpus-00000-of-00001.parquet", index=False) queries_df.to_parquet(sample_path / "queries" / "queries-00000-of-00001.parquet", index=False) qrels_df.to_parquet(sample_path / "data" / "test-00000-of-00001.parquet", index=False) print(f"Sample dataset saved to {sample_path}") print(f" - Corpus: {len(corpus_df)} documents") print(f" - Queries: {len(queries_df)} queries") print(f" - Qrels: {len(qrels_df)} relevance judgments") if __name__ == "__main__": corpus, queries, qrels = create_sample_dataset() save_sample_dataset(corpus, queries, qrels)