Datasets:
File size: 6,654 Bytes
6b16776 be213f6 6b16776 be213f6 2b76c64 78dfb78 654ccbf 78dfb78 654ccbf 78dfb78 654ccbf 78dfb78 654ccbf 78dfb78 654ccbf 78dfb78 be213f6 6b16776 be213f6 ec38153 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 6b16776 be213f6 78dfb78 be213f6 6b16776 be213f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
annotations_creators:
- expert-annotated
language_creators:
- expert-generated
language:
- asm
- ben
- brx
- doi
- eng
- gom
- guj
- hin
- kan
- kas
- mai
- mal
- mar
- mni
- npi
- ory
- pan
- san
- sat
- snd
- tam
- tel
- urd
license: cc-by-4.0
multilinguality: multilingual
size_categories:
- 1K<n<10K
task_categories:
- translation
task_ids: []
pretty_name: in22-gen
language_details: asm_Beng, ben_Beng, brx_Deva, doi_Deva, eng_Latn, gom_Deva, guj_Gujr,
hin_Deva, kan_Knda, kas_Arab, mai_Deva, mal_Mlym, mar_Deva, mni_Mtei, npi_Deva,
ory_Orya, pan_Guru, san_Deva, sat_Olck, snd_Deva, tam_Taml, tel_Telu, urd_Arab
configs:
- config_name: default
data_files:
- split: test
path: test.parquet
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">IN22GenBitextMining</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
IN22-Gen is a n-way parallel general-purpose multi-domain benchmark dataset for machine translation spanning English and 22 Indic languages.
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | Web, Legal, Government, News, Religious, Non-fiction, Written |
| Reference | https://huggingface.co/datasets/ai4bharat/IN22-Gen |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["IN22GenBitextMining"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@article{gala2023indictrans,
author = {Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
issn = {2835-8856},
journal = {Transactions on Machine Learning Research},
note = {},
title = {IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
url = {https://openreview.net/forum?id=vfT4YuzAYA},
year = {2023},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("IN22GenBitextMining")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 518144,
"number_of_characters": 162367876,
"unique_pairs": 518101,
"min_sentence1_length": 9,
"average_sentence1_length": 156.6821925951087,
"max_sentence1_length": 692,
"unique_sentence1": 23550,
"min_sentence2_length": 9,
"average_sentence2_length": 156.6821925951087,
"max_sentence2_length": 692,
"unique_sentence2": 23550
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |