Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Japanese
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,647 Bytes
89cd73c
9bbf13c
 
 
 
 
 
 
7ea085c
9bbf13c
 
 
 
 
89cd73c
db50047
 
 
 
 
 
 
 
 
 
 
 
7352ae7
db50047
89958a6
 
 
 
 
 
 
 
 
 
 
 
e224956
89958a6
db50047
89cd73c
 
 
 
 
 
 
4956a08
89cd73c
4956a08
 
89cd73c
db50047
 
 
 
89958a6
 
 
 
89cd73c
 
 
 
9bbf13c
 
 
89cd73c
9bbf13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ea085c
9bbf13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ea085c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bbf13c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
annotations_creators:
- derived
language:
- jpn
license: cc-by-4.0
multilinguality: monolingual
source_datasets:
- sbintuitions/JMTEB
- sbintuitions/JMTEB
task_categories:
- text-retrieval
task_ids:
- document-retrieval
dataset_info:
- config_name: corpus
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: title
    dtype: string
  splits:
  - name: test
    num_bytes: 839371
    num_examples: 637
  download_size: 419471
  dataset_size: 839371
- config_name: qrels
  features:
  - name: query-id
    dtype: string
  - name: corpus-id
    dtype: string
  - name: score
    dtype: int64
  splits:
  - name: test
    num_bytes: 14170
    num_examples: 510
  download_size: 6803
  dataset_size: 14170
- config_name: queries
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 45408
    num_examples: 510
  download_size: 26845
  dataset_size: 45408
configs:
- config_name: corpus
  data_files:
  - split: test
    path: corpus/test-*
- config_name: qrels
  data_files:
  - split: test
    path: qrels/test-*
- config_name: queries
  data_files:
  - split: test
    path: queries/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NLPJournalTitleAbsRetrieval.V2</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

This dataset was created from the Japanese NLP Journal LaTeX Corpus. The titles, abstracts and introductions of the academic papers were shuffled. The goal is to find the corresponding abstract with the given title. This is the V2 dataset (last updated 2025-06-15).

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2t                              |
| Domains       | Academic, Written                               |
| Reference     | https://huggingface.co/datasets/sbintuitions/JMTEB |

Source datasets:
- [sbintuitions/JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)
- [sbintuitions/JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_task("NLPJournalTitleAbsRetrieval.V2")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@misc{jmteb,
  author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan},
  howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB}},
  title = {{J}{M}{T}{E}{B}: {J}apanese {M}assive {T}ext {E}mbedding {B}enchmark},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("NLPJournalTitleAbsRetrieval.V2")

desc_stats = task.metadata.descriptive_stats
```

```json
{
    "test": {
        "num_samples": 1147,
        "number_of_characters": 308305,
        "num_documents": 637,
        "min_document_length": 18,
        "average_document_length": 461.51962323390893,
        "max_document_length": 1290,
        "unique_documents": 637,
        "num_queries": 510,
        "min_query_length": 5,
        "average_query_length": 28.072549019607845,
        "max_query_length": 71,
        "unique_queries": 510,
        "none_queries": 0,
        "num_relevant_docs": 510,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 510,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*