--- annotations_creators: - expert-annotated language: - eng - fas - rus - zho license: odc-by multilinguality: multilingual source_datasets: - jhu-clsp/mFollowIR-cross-lingual-parquet-mteb task_categories: - text-ranking task_ids: [] dataset_info: - config_name: eng-fas-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 235174554 num_examples: 41189 download_size: 107894009 dataset_size: 235174554 - config_name: eng-fas-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 1581305 num_examples: 24326 download_size: 474152 dataset_size: 1581305 - config_name: eng-fas-queries features: - name: id dtype: string - name: text dtype: string - name: instruction dtype: string splits: - name: test num_bytes: 42876 num_examples: 80 download_size: 17854 dataset_size: 42876 - config_name: eng-fas-top_ranked features: - name: query-id dtype: string - name: corpus-ids list: string splits: - name: test num_bytes: 3201688 num_examples: 80 download_size: 1776453 dataset_size: 3201688 - config_name: eng-rus-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 199636555 num_examples: 39326 download_size: 99830813 dataset_size: 199636555 - config_name: eng-rus-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 1570083 num_examples: 24134 download_size: 476144 dataset_size: 1570083 - config_name: eng-rus-queries features: - name: id dtype: string - name: text dtype: string - name: instruction dtype: string splits: - name: test num_bytes: 40715 num_examples: 80 download_size: 17378 dataset_size: 40715 - config_name: eng-rus-top_ranked features: - name: query-id dtype: string - name: corpus-ids list: string splits: - name: test num_bytes: 3201692 num_examples: 80 download_size: 1843665 dataset_size: 3201692 - config_name: eng-zho-corpus features: - name: id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 122153598 num_examples: 41120 download_size: 83549878 dataset_size: 122153598 - config_name: eng-zho-qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 1655124 num_examples: 25464 download_size: 492013 dataset_size: 1655124 - config_name: eng-zho-queries features: - name: id dtype: string - name: text dtype: string - name: instruction dtype: string splits: - name: test num_bytes: 46252 num_examples: 86 download_size: 18770 dataset_size: 46252 - config_name: eng-zho-top_ranked features: - name: query-id dtype: string - name: corpus-ids list: string splits: - name: test num_bytes: 3441815 num_examples: 86 download_size: 1925291 dataset_size: 3441815 configs: - config_name: eng-fas-corpus data_files: - split: test path: eng-fas-corpus/test-* - config_name: eng-fas-qrels data_files: - split: test path: eng-fas-qrels/test-* - config_name: eng-fas-queries data_files: - split: test path: eng-fas-queries/test-* - config_name: eng-fas-top_ranked data_files: - split: test path: eng-fas-top_ranked/test-* - config_name: eng-rus-corpus data_files: - split: test path: eng-rus-corpus/test-* - config_name: eng-rus-qrels data_files: - split: test path: eng-rus-qrels/test-* - config_name: eng-rus-queries data_files: - split: test path: eng-rus-queries/test-* - config_name: eng-rus-top_ranked data_files: - split: test path: eng-rus-top_ranked/test-* - config_name: eng-zho-corpus data_files: - split: test path: eng-zho-corpus/test-* - config_name: eng-zho-qrels data_files: - split: test path: eng-zho-qrels/test-* - config_name: eng-zho-queries data_files: - split: test path: eng-zho-queries/test-* - config_name: eng-zho-top_ranked data_files: - split: test path: eng-zho-top_ranked/test-* tags: - mteb - text ---

mFollowIRCrossLingual

An MTEB dataset
Massive Text Embedding Benchmark
This tasks measures retrieval instruction following ability on NeuCLIR narratives for the mFollowIR benchmark on the Farsi, Russian, and Chinese languages with English queries/instructions. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | News, Written | | Reference | https://neuclir.github.io/ | Source datasets: - [jhu-clsp/mFollowIR-cross-lingual-parquet-mteb](https://huggingface.co/datasets/jhu-clsp/mFollowIR-cross-lingual-parquet-mteb) ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_task("mFollowIRCrossLingual") evaluator = mteb.MTEB([task]) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @article{weller2024mfollowir, author = {Weller, Orion and Chang, Benjamin and Yang, Eugene and Yarmohammadi, Mahsa and Barham, Sam and MacAvaney, Sean and Cohan, Arman and Soldaini, Luca and Van Durme, Benjamin and Lawrie, Dawn}, journal = {arXiv preprint TODO}, title = {{mFollowIR: a Multilingual Benchmark for Instruction Following in Retrieval}}, year = {2024}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics
Dataset Statistics The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("mFollowIRCrossLingual") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 121881, "number_of_characters": 283776279, "documents_text_statistics": { "total_text_length": 283652509, "min_text_length": 74, "average_text_length": 2331.9974431701403, "max_text_length": 24180, "unique_texts": 121635 }, "documents_image_statistics": null, "queries_text_statistics": { "total_text_length": 123770, "min_text_length": 155, "average_text_length": 503.130081300813, "max_text_length": 1073, "unique_texts": 198 }, "queries_image_statistics": null, "relevant_docs_statistics": { "num_relevant_docs": 1935, "min_relevant_docs_per_query": 123, "average_relevant_docs_per_query": 7.865853658536586, "max_relevant_docs_per_query": 450, "unique_relevant_docs": 36075 }, "top_ranked_statistics": { "num_top_ranked": 246000, "min_top_ranked_per_query": 1000, "average_top_ranked_per_query": 1000.0, "max_top_ranked_per_query": 1000 }, "hf_subset_descriptive_stats": { "eng-fas": { "num_samples": 41269, "number_of_characters": 129640020, "documents_text_statistics": { "total_text_length": 129599132, "min_text_length": 99, "average_text_length": 3146.4500716210637, "max_text_length": 24180, "unique_texts": 41189 }, "documents_image_statistics": null, "queries_text_statistics": { "total_text_length": 40888, "min_text_length": 222, "average_text_length": 511.1, "max_text_length": 1073, "unique_texts": 80 }, "queries_image_statistics": null, "relevant_docs_statistics": { "num_relevant_docs": 646, "min_relevant_docs_per_query": 151, "average_relevant_docs_per_query": 8.075, "max_relevant_docs_per_query": 450, "unique_relevant_docs": 11859 }, "top_ranked_statistics": { "num_top_ranked": 80000, "min_top_ranked_per_query": 1000, "average_top_ranked_per_query": 1000.0, "max_top_ranked_per_query": 1000 } }, "eng-rus": { "num_samples": 39406, "number_of_characters": 109560678, "documents_text_statistics": { "total_text_length": 109521931, "min_text_length": 75, "average_text_length": 2784.9751055281495, "max_text_length": 24062, "unique_texts": 39326 }, "documents_image_statistics": null, "queries_text_statistics": { "total_text_length": 38747, "min_text_length": 155, "average_text_length": 484.3375, "max_text_length": 1056, "unique_texts": 80 }, "queries_image_statistics": null, "relevant_docs_statistics": { "num_relevant_docs": 588, "min_relevant_docs_per_query": 168, "average_relevant_docs_per_query": 7.35, "max_relevant_docs_per_query": 443, "unique_relevant_docs": 11934 }, "top_ranked_statistics": { "num_top_ranked": 80000, "min_top_ranked_per_query": 1000, "average_top_ranked_per_query": 1000.0, "max_top_ranked_per_query": 1000 } }, "eng-zho": { "num_samples": 41206, "number_of_characters": 44575581, "documents_text_statistics": { "total_text_length": 44531446, "min_text_length": 74, "average_text_length": 1082.963180933852, "max_text_length": 23841, "unique_texts": 41120 }, "documents_image_statistics": null, "queries_text_statistics": { "total_text_length": 44135, "min_text_length": 222, "average_text_length": 513.1976744186046, "max_text_length": 941, "unique_texts": 86 }, "queries_image_statistics": null, "relevant_docs_statistics": { "num_relevant_docs": 701, "min_relevant_docs_per_query": 123, "average_relevant_docs_per_query": 8.151162790697674, "max_relevant_docs_per_query": 429, "unique_relevant_docs": 12282 }, "top_ranked_statistics": { "num_top_ranked": 86000, "min_top_ranked_per_query": 1000, "average_top_ranked_per_query": 1000.0, "max_top_ranked_per_query": 1000 } } } } } ```
--- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*