File size: 6,726 Bytes
2a2330d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
license: mit
task_categories:
- tabular-classification
language:
- en
tags:
- social-media
- spam-detection
- facebook
- cybersecurity
- machine-learning
- binary-classification
- fraud-detection
size_categories:
- n<1K
---

# Facebook Spam Detection Dataset

## Dataset Summary

This dataset contains **600 Facebook profiles** with behavioral and activity features designed for **spam detection** in social media. The dataset enables binary classification to distinguish between spam accounts (Label=1) and legitimate accounts (Label=0), providing insights into spammer behavior patterns on Facebook.

## Dataset Details

- **Total Samples**: 600 profiles
- **Classes**: Binary (0 = Legitimate, 1 = Spam)
- **Class Distribution**: Imbalanced (17.2% spam, 82.8% legitimate)
- **Features**: 14 behavioral characteristics + 1 target label
- **Format**: CSV file

## Features Description

| Feature | Type | Description | Range |
|---------|------|-------------|-------|
| `profile id` | Integer | Unique profile identifier | 1-600 |
| `#friends` | Integer | Number of friends | 4-5,554 |
| `#following` | Integer | Number of accounts being followed | 1-5,312 |
| `#community` | Integer | Number of communities/groups joined | 12-1,789 |
| `age` | Integer | Account age (likely in days) | 125-2,697 |
| `#postshared` | Integer | Total number of posts shared | 76-3,896 |
| `#urlshared` | Integer | Number of URLs shared in posts | 11-2,956 |
| `#photos/videos` | Integer | Number of photos/videos posted | 65-3,891 |
| `fpurls` | Float | Frequency/proportion of URLs in posts | 0.01-1.09 |
| `fpphotos/videos` | Float | Frequency/proportion of media content | 0.0-2.74 |
| `avgcomment/post` | Float | Average comments per post | 0.0-665 |
| `likes/post` | Float | Average likes per post | 0.1-2.8 |
| `tags/post` | Integer | Tags used in posts | 10-99 |
| `#tags/post` | Integer | Number of tags per post | 1-32 |
| `Label` | Integer | **Target variable** - Spam (1) or Legitimate (0) | 0-1 |

## Key Statistics

- **Network Size**: Average 1,066 friends and 1,069 following
- **Community Engagement**: Average 208 communities joined
- **Account Maturity**: Average age of 1,215 days (~3.3 years)
- **Content Activity**: 
  - Average 1,158 posts shared
  - Average 370 URLs shared
  - Average 1,121 photos/videos posted
- **Engagement Metrics**:
  - Average 1.6 comments per post
  - Average 0.88 likes per post
  - Average 16 tags per post

## Class Imbalance

⚠️ **Important**: This dataset is imbalanced:
- **Legitimate accounts**: 497 samples (82.8%)
- **Spam accounts**: 103 samples (17.2%)

Consider using techniques like SMOTE, class weighting, or balanced sampling for training.

## Use Cases

This dataset is ideal for:

- **Spam Detection**: Build classifiers to identify Facebook spam accounts
- **Behavioral Analysis**: Study differences between spam and legitimate user behavior
- **Anomaly Detection**: Develop unsupervised methods for suspicious activity detection
- **Social Media Security**: Research automated content moderation systems
- **Imbalanced Learning**: Practice techniques for handling skewed datasets

## Quick Start

```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
from imblearn.over_sampling import SMOTE

# Load dataset
df = pd.read_csv('Facebook Spam Dataset.csv')

# Prepare features and target
X = df.drop(['Label', 'profile id'], axis=1)
y = df['Label']

# Handle class imbalance with SMOTE
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)

# Split data
X_train, X_test, y_train, y_test = train_test_split(
    X_resampled, y_resampled, test_size=0.2, random_state=42, stratify=y_resampled
)

# Train model
model = RandomForestClassifier(
    n_estimators=100, 
    class_weight='balanced',
    random_state=42
)
model.fit(X_train, y_train)

# Evaluate
y_pred = model.predict(X_test)
print("Classification Report:")
print(classification_report(y_test, y_pred))
```

## Suggested Approaches

### Traditional ML
- **Random Forest**: Handles mixed data types well
- **Gradient Boosting**: XGBoost, LightGBM for performance
- **SVM**: With RBF kernel for non-linear patterns
- **Logistic Regression**: With proper feature scaling

### Handling Imbalance
- **Sampling**: SMOTE, ADASYN for oversampling
- **Cost-sensitive**: Class weights in algorithms
- **Ensemble**: Balanced bagging, EasyEnsemble
- **Metrics**: Focus on F1-score, AUC-ROC, precision/recall

### Feature Engineering
- **Ratios**: Create engagement ratios (likes/posts, comments/posts)
- **Behavioral**: URL sharing patterns, media content ratios
- **Network**: Friend-to-following ratios, community participation
- **Temporal**: Account age interactions with activity levels

## Model Evaluation Tips

Given the class imbalance, prioritize these metrics:
- **F1-Score**: Harmonic mean of precision and recall
- **AUC-ROC**: Area under the ROC curve
- **Precision/Recall**: Especially for spam class (minority)
- **Confusion Matrix**: To understand false positives/negatives

## Data Quality

-**Complete Data**: No missing values
- ⚠️ **Class Imbalance**: 82.8% legitimate vs 17.2% spam
-**Feature Variety**: Network, content, and engagement metrics
-**Realistic Ranges**: All features show plausible Facebook activity patterns

## Research Opportunities

1. **Behavioral Patterns**: What distinguishes spam from legitimate user behavior?
2. **Feature Importance**: Which metrics are most predictive of spam accounts?
3. **Temporal Analysis**: How does account age correlate with spam likelihood?
4. **Network Effects**: Do spam accounts show distinct networking patterns?
5. **Content Analysis**: How do URL sharing and media patterns differ?

## Potential Applications

- **Social Media Platforms**: Automated spam account detection
- **Content Moderation**: Flagging suspicious posting patterns
- **User Safety**: Protecting users from spam and malicious content
- **Research**: Understanding social media abuse patterns
- **Security Systems**: Real-time threat detection algorithms

## Citation

```bibtex
@dataset{facebook_spam_detection_2024,
  title={Facebook Spam Detection Dataset},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/nahiar/facebook-spam-detection}
}
```

## Notes

- The `age` feature appears to be in days rather than years
- Some ratio features (like `fpurls`, `fpphotos/videos`) may exceed 1.0, indicating normalized metrics
- Consider feature scaling for distance-based algorithms
- The dataset reflects Facebook's ecosystem and user behavior patterns