File size: 4,357 Bytes
d8991e7 f27115d d8991e7 f27115d d8991e7 f27115d d8991e7 be99069 ea37fcc d8991e7 be99069 d8991e7 ea37fcc be99069 ea37fcc d8991e7 be99069 d8991e7 ea37fcc be99069 588d57c ea37fcc be99069 ea37fcc be99069 ea37fcc be99069 d8991e7 ea37fcc be99069 ea37fcc be99069 ea37fcc fd183be be99069 d8991e7 ea37fcc be99069 ea37fcc d8991e7 ea37fcc 907fa08 be99069 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: mit
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
pretty_name: Beam-Level (5G) Time-Series Dataset
configs:
- config_name: DLPRB
description: Downlink Physical Resource Block (DLPRB) time-series data.
data_files:
- split: train_0w_5w
path: data/train/DLPRB_train_0w-5w.csv
- split: test_5w_6w
path: data/test/DLPRB_test_5w-6w.csv
- split: test_10w_11w
path: data/test/DLPRB_test_10w-11w.csv
- config_name: DLThpVol
description: Downlink Throughput Volume (DLThpVol) time-series data.
data_files:
- split: train_0w_5w
path: data/train/DLThpVol_train_0w-5w.csv
- split: test_5w_6w
path: data/test/DLThpVol_test_5w-6w.csv
- split: test_10w_11w
path: data/test/DLThpVol_test_10w-11w.csv
- config_name: DLThpTime
description: Downlink Throughput Time (DLThpTime) time-series data.
data_files:
- split: train_0w_5w
path: data/train/DLThpTime_train_0w-5w.csv
- split: test_5w_6w
path: data/test/DLThpTime_test_5w-6w.csv
- split: test_10w_11w
path: data/test/DLThpTime_test_10w-11w.csv
- config_name: MR_number
description: Measurement Report Number (MR_number) time-series data.
data_files:
- split: train_0w_5w
path: data/train/MR_number_train_0w-5w.csv
- split: test_5w_6w
path: data/test/MR_number_test_5w-6w.csv
- split: test_10w_11w
path: data/test/MR_number_test_10w-11w.csv
language:
- en
tags:
- wireless
---
# πΆ Beam-Level (5G) Time-Series Dataset
This dataset introduces a **novel multivariate time series** specifically curated to support research in enabling **accurate prediction of KPIs** across communication networks, as illustrated below:
<p align="center">
Β <img src="images/network.png" alt="Base station, cells, and beams" />
</p>
Precise forecasting of network traffic is critical for optimizing **network management** and enhancing **resource allocation efficiency**. This task is of both **practical and theoretical importance** to researchers in networking and machine learning, offering a strong benchmark for state-of-the-art (SOTA) time series models.
---
## π Dataset Overview
The dataset comprises:
* **2,880 Beams** across 30 Base Stations (3 Cells per Station, 32 Beams per Cell).
* **Duration:** 5 weeks + 2 target weeks, totaling up to 840 training hours and 1176 total hours per beam.
---
## π Available CSV Files
### ποΈββοΈ Training Set (Weeks 0β5)
| File Name | Metric |
|---|---|
| `DLThpVol_train_0w-5w.csv` | Downlink throughput volume |
| `DLThpTime_train_0w-5w.csv` | Throughput transmission time |
| `DLPRB_train_0w-5w.csv` | PRB (Physical Resource Block) usage |
| `MR_number_train_0w-5w.csv` | User count (Measurement Reports) |
### π― Forecast Targets
#### π 6th Week (Week 5β6)
| File Name | Metric |
|---|---|
| `DLThpVol_test_5w-6w.csv` | Downlink throughput volume |
| `DLThpTime_test_5w-6w.csv` | Throughput transmission time |
| `DLPRB_test_5w-6w.csv` | PRB usage |
| `MR_number_test_5w-6w.csv` | User count |
#### π 11th Week (Week 10β11)
| File Name | Metric |
|---|---|
| `DLThpVol_test_10w-11w.csv` | Downlink throughput volume |
| `DLThpTime_test_10w-11w.csv` | Throughput transmission time |
| `DLPRB_test_10w-11w.csv` | PRB usage |
| `MR_number_test_10w-11w.csv` | User count |
---
## π§ͺ Dataset Splits
<p align="center">
Β <img src="images/dataset_split.png" alt="Dataset train/forecast split" />
</p>
The dataset is split into a **Training Set** (first 5 weeks) and **Forecast Targets** for Week 6 (immediate future) and Week 11 (long-term future).
---
## π Data Format
Each CSV file contains a `Time` column and multiple beam columns (e.g., `0_0_0` to `29_2_31`). The `Time` column ranges from `0β839` for training (weeks 1β6), `0β167` for week 6, and `168β335` for week 11. Each beam column uniquely identifies one of the **2,880 beams** across 30 base stations.
---
## π Citation
If you use this dataset in your research, please cite:
> **L. Fechete et al.**, *Goal-Oriented Time-Series Forecasting: Foundation Framework Design*, arXiv:2504.17493 (2025)
---
## π Code Repository
The official codebase for working with this dataset is available here: π [https://github.com/netop-team/gotsf](https://github.com/netop-team/gotsf)
|