File size: 4,357 Bytes
d8991e7
 
 
f27115d
d8991e7
f27115d
 
d8991e7
 
f27115d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8991e7
be99069
 
 
ea37fcc
d8991e7
be99069
d8991e7
ea37fcc
be99069
ea37fcc
d8991e7
be99069
d8991e7
ea37fcc
 
 
 
be99069
 
588d57c
ea37fcc
 
 
 
 
 
 
be99069
 
 
 
 
 
ea37fcc
 
 
 
 
be99069
 
 
 
 
 
ea37fcc
 
 
be99069
 
 
 
 
 
d8991e7
ea37fcc
 
 
 
 
be99069
ea37fcc
 
be99069
ea37fcc
 
 
 
fd183be
be99069
d8991e7
ea37fcc
 
 
 
 
 
be99069
ea37fcc
 
d8991e7
ea37fcc
907fa08
be99069
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: mit
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
pretty_name: Beam-Level (5G) Time-Series Dataset
configs:
- config_name: DLPRB
  description: Downlink Physical Resource Block (DLPRB) time-series data.
  data_files:
  - split: train_0w_5w
    path: data/train/DLPRB_train_0w-5w.csv
  - split: test_5w_6w
    path: data/test/DLPRB_test_5w-6w.csv
  - split: test_10w_11w
    path: data/test/DLPRB_test_10w-11w.csv
- config_name: DLThpVol
  description: Downlink Throughput Volume (DLThpVol) time-series data.
  data_files:
  - split: train_0w_5w
    path: data/train/DLThpVol_train_0w-5w.csv
  - split: test_5w_6w
    path: data/test/DLThpVol_test_5w-6w.csv
  - split: test_10w_11w
    path: data/test/DLThpVol_test_10w-11w.csv
- config_name: DLThpTime
  description: Downlink Throughput Time (DLThpTime) time-series data.
  data_files:
  - split: train_0w_5w
    path: data/train/DLThpTime_train_0w-5w.csv
  - split: test_5w_6w
    path: data/test/DLThpTime_test_5w-6w.csv
  - split: test_10w_11w
    path: data/test/DLThpTime_test_10w-11w.csv
- config_name: MR_number
  description: Measurement Report Number (MR_number) time-series data.
  data_files:
  - split: train_0w_5w
    path: data/train/MR_number_train_0w-5w.csv
  - split: test_5w_6w
    path: data/test/MR_number_test_5w-6w.csv
  - split: test_10w_11w
    path: data/test/MR_number_test_10w-11w.csv
language:
- en
tags:
- wireless
---



# πŸ“Ά Beam-Level (5G) Time-Series Dataset

This dataset introduces a **novel multivariate time series** specifically curated to support research in enabling **accurate prediction of KPIs** across communication networks, as illustrated below:

<p align="center">
Β  <img src="images/network.png" alt="Base station, cells, and beams" />
</p>

Precise forecasting of network traffic is critical for optimizing **network management** and enhancing **resource allocation efficiency**. This task is of both **practical and theoretical importance** to researchers in networking and machine learning, offering a strong benchmark for state-of-the-art (SOTA) time series models.

---

## πŸ“‚ Dataset Overview

The dataset comprises:
* **2,880 Beams** across 30 Base Stations (3 Cells per Station, 32 Beams per Cell).
* **Duration:** 5 weeks + 2 target weeks, totaling up to 840 training hours and 1176 total hours per beam.

---

## πŸ“ Available CSV Files

### πŸ‹οΈβ€β™‚οΈ Training Set (Weeks 0–5)

| File Name | Metric |
|---|---|
| `DLThpVol_train_0w-5w.csv` | Downlink throughput volume |
| `DLThpTime_train_0w-5w.csv` | Throughput transmission time |
| `DLPRB_train_0w-5w.csv` | PRB (Physical Resource Block) usage |
| `MR_number_train_0w-5w.csv` | User count (Measurement Reports) |

### 🎯 Forecast Targets

#### πŸ“† 6th Week (Week 5–6)

| File Name | Metric |
|---|---|
| `DLThpVol_test_5w-6w.csv` | Downlink throughput volume |
| `DLThpTime_test_5w-6w.csv` | Throughput transmission time |
| `DLPRB_test_5w-6w.csv` | PRB usage |
| `MR_number_test_5w-6w.csv` | User count |

#### πŸ“† 11th Week (Week 10–11)

| File Name | Metric |
|---|---|
| `DLThpVol_test_10w-11w.csv` | Downlink throughput volume |
| `DLThpTime_test_10w-11w.csv` | Throughput transmission time |
| `DLPRB_test_10w-11w.csv` | PRB usage |
| `MR_number_test_10w-11w.csv` | User count |

---

## πŸ§ͺ Dataset Splits

<p align="center">
Β  <img src="images/dataset_split.png" alt="Dataset train/forecast split" />
</p>

The dataset is split into a **Training Set** (first 5 weeks) and **Forecast Targets** for Week 6 (immediate future) and Week 11 (long-term future).

---

## πŸ“„ Data Format

Each CSV file contains a `Time` column and multiple beam columns (e.g., `0_0_0` to `29_2_31`). The `Time` column ranges from `0–839` for training (weeks 1–6), `0–167` for week 6, and `168–335` for week 11. Each beam column uniquely identifies one of the **2,880 beams** across 30 base stations.

---

## πŸ“š Citation

If you use this dataset in your research, please cite:

> **L. Fechete et al.**, *Goal-Oriented Time-Series Forecasting: Foundation Framework Design*, arXiv:2504.17493 (2025)

---

## πŸ”— Code Repository

The official codebase for working with this dataset is available here: πŸ‘‰ [https://github.com/netop-team/gotsf](https://github.com/netop-team/gotsf)