--- license: mit modalities: - Text formats: - parquet size: 10M - 100M libraries: - Datasets - Dask - Croissant - Polars --- # ๐Ÿš€ GitHub Code 2025: The Clean Code Manifesto > **A meticulously curated dataset of 1.5M+ repositories representing both quality and innovation in 2025's code ecosystem** ## ๐ŸŒŸ The Philosophy **Quality Over Quantity, Purpose Over Volume** In an era of data abundance, we present a dataset built on radical curation. Every file, every repository, every byte has been carefully selected to represent the **signal** in the noise of open-source development. ## ๐ŸŽฏ What This Dataset Is ### ๐Ÿ“Š Dual-Perspective Design | Subset | ๐ŸŽ–๏ธ Above 2 Stars | ๐ŸŒฑ Below 2 Stars (2025) | |--------|------------------|------------------------| | **Scope** | 1M top repositories | 1M random 2025 repos | | **Purpose** | Proven quality & patterns | Emerging trends & innovation | | **Value** | What works | What's next | ### ๐Ÿงน The Clean Code Promise ```python # What you WON'T find here: ๐Ÿšซ Binary files # No images, executables, models ๐Ÿšซ Build artifacts # No node_modules, __pycache__ ๐Ÿšซ Configuration noise # No .git, IDE files, lock files ๐Ÿšซ License duplication # No repetitive legal text ๐Ÿšซ Minified code # No compressed/obfuscated content ๐Ÿšซ Empty files # No whitespace-only content ``` ## ๐Ÿ“ Dataset Structure ``` github-code-2025/ โ”œโ”€โ”€ ๐Ÿ“ˆ above-2-stars/ โ”‚ โ”œโ”€โ”€ train_000.parquet โ”‚ โ”œโ”€โ”€ train_001.parquet โ”‚ โ””โ”€โ”€ ... โ””โ”€โ”€ ๐ŸŒฑ below-2-star/ โ”œโ”€โ”€ train_000.parquet โ”œโ”€โ”€ train_001.parquet โ””โ”€โ”€ ... ``` ### ๐Ÿ“Š Schema ```python { "repo_id": "owner/repo_name", # ๐Ÿ“ Repository identifier "file_path": "src/main.py", # ๐Ÿ—‚๏ธ Relative file path "content": "def clean_code():", # ๐Ÿ’Ž Actual source code "size": 1024 # ๐Ÿ“ File size in bytes } ``` ## ๐Ÿ› ๏ธ How to Use ### ๐Ÿ”ฅ Quick Start ```python from datasets import load_dataset # Load the quality benchmark quality_ds = load_dataset("nick007x/github-code-2025", "above-2-stars") # Load emerging trends emerging_ds = load_dataset("nick007x/github-code-2025", "below-2-star") # Mix for balanced training balanced_ds = interleave_datasets([quality_ds, emerging_ds]) ``` ### ๐ŸŽฏ Ideal Use Cases - **๐Ÿง  AI Training**: Clean, diverse code for language models - **๐Ÿ“Š Code Analysis**: Compare popular vs emerging patterns - **๐Ÿ” Trend Research**: 2025 development practices - **๐ŸŽ“ Education**: High-quality examples for learning - **๐Ÿ› ๏ธ Tool Development**: Benchmarking code quality tools ## ๐Ÿ—๏ธ Creation Methodology ### ๐ŸŽจ Selection Strategy | Phase | Action | Purpose | |-------|--------|---------| | **1** | ๐ŸŽฏ Dual population sampling | Balance quality & innovation | | **2** | ๐Ÿงน Multi-layer filtering | Remove noise & binaries | | **3** | ๐Ÿ“ Size normalization | Focus on meaningful content | | **4** | ๐Ÿ” Content validation | Ensure text quality | | **5** | ๐Ÿท๏ธ Metadata preservation | Maintain context | ### ๐Ÿšซ What We Filtered Out **File Types Removed:** - 50+ binary extensions (images, models, executables) - 30+ build/system directories - 15+ configuration file types - All files outside 1KB-5MB range **Quality Checks:** - โœ… UTF-8 text validation - โœ… Non-empty content check - โœ… Binary detection - โœ… Repository structure preservation ## ๐ŸŽช Why This Dataset Matters ### ๐Ÿ’ซ The Quality Revolution We reject the "more data is better" dogma. Instead, we offer: - **๐ŸŽฏ Intentional Curation**: Every file serves a purpose - **โš–๏ธ Balanced Perspective**: Popular + Emerging = Complete picture - **๐Ÿงน Unprecedented Cleanliness**: The cleanest code dataset available - **๐Ÿ“… Temporal Intelligence**: 2025-focused for relevance ## ๐Ÿค Contributing & Feedback This dataset is a living project. We welcome: - ๐Ÿ› Bug reports and issues - ๐Ÿ’ก Feature requests for future versions - ๐Ÿ“Š Validation of data quality - ๐ŸŽฏ Suggestions for improvement ## ๐Ÿ“œ License This dataset aggregates Github repos. Each individual repo maintains its original copyright and license terms (typically various Creative Commons licenses like CC BY, CC BY-NC, etc.). Users must verify and comply with the specific license of any repo they extract and use from this collection. The MIT license in this repository applies only to the dataset compilation and packaging code. **Important**: Repository contents maintain their original licenses. Please respect individual project licenses when using this data. ## ๐Ÿ™ Acknowledgments Built with gratitude for the entire open-source community. Every file in this dataset represents hours of dedication from developers worldwide. --- **โญ If this dataset helps your research or project, please consider starring the repository!** > **"In the pursuit of AI that understands code, we must first understand what code is worth learning."**