File size: 4,333 Bytes
8734f43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: mit
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
pretty_name: MiniImageNet-C
size_categories:
- 100K<n<1M
tags:
- computer-vision
- robustness
- corruption
- imagenet
- benchmark
configs:
- config_name: default
  data_files:
  - split: test
    path: "*/severity_5/*/*.JPEG"
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype: class_label
    names:
      _type: Value
      dtype: string
  - name: corruption_type
    dtype: string
  - name: severity
    dtype: int32
  splits:
  - name: test
    num_bytes: 750000000
    num_examples: 750000
  download_size: 750000000
  dataset_size: 750000000
---

# MiniImageNet-C Dataset

## Dataset Description

MiniImageNet-C is a compact version of the ImageNet-C robustness benchmark dataset. It contains corrupted images from ImageNet designed to test the robustness of computer vision models to various types of image corruptions.

### Dataset Summary

This dataset is a subset of the original ImageNet-C dataset, containing:
- **15 corruption types**: gaussian_noise, shot_noise, impulse_noise, defocus_blur, glass_blur, motion_blur, zoom_blur, snow, frost, fog, brightness, contrast, elastic_transform, pixelate, jpeg_compression
- **1 severity level**: Only severity level 5 (most severe)
- **50 images per class per corruption**: Randomly selected from the original dataset
- **1000 classes**: All ImageNet classes
- **Total images**: 750,000 (15 corruptions × 50 images × 1000 classes)

The dataset uses a fixed random seed (7600) for reproducible image selection.

### Supported Tasks and Leaderboards

- **Image Classification**: Multi-class image classification with 1000 classes
- **Robustness Evaluation**: Testing model performance under various image corruptions
- **Benchmarking**: Comparing model robustness across different corruption types

### Languages

Not applicable (computer vision dataset).

## Dataset Structure

### Data Instances

Each instance contains:
- `image`: A PIL Image object
- `label`: Integer class label (0-999)
- `corruption_type`: String indicating the type of corruption applied
- `severity`: Integer indicating corruption severity (always 5)

### Data Fields

- `image` (PIL Image): The corrupted image
- `label` (int): Class label corresponding to ImageNet classes
- `corruption_type` (string): One of 15 corruption types
- `severity` (int): Corruption severity level (always 5)

### Data Splits

The dataset contains only a test split with 750,000 images total.

## Dataset Creation

### Curation Rationale

This dataset was created to provide a more manageable subset of ImageNet-C for:
- Quick robustness evaluation during development
- Reduced computational requirements for benchmarking
- Educational purposes and prototyping

### Source Data

#### Initial Data Collection and Normalization

The source data comes from ImageNet-C, which applies algorithmic corruptions to the original ImageNet validation set.

#### Who are the source language producers?

Not applicable.

### Annotations

#### Annotation process

Labels are inherited from the original ImageNet dataset.

#### Who are the annotators?

Original ImageNet annotators.

### Personal and Sensitive Information

The dataset contains no personal or sensitive information.

## Considerations for Using the Data

### Social Impact of Dataset

This dataset is intended for research purposes to improve the robustness of computer vision models.

### Discussion of Biases

Inherits any biases present in the original ImageNet dataset.

### Other Known Limitations

- Limited to severity level 5 only
- Reduced number of images per class may not capture full diversity
- May not be representative of real-world corruptions

## Additional Information

### Dataset Curators

Created for research purposes based on ImageNet-C.

### Licensing Information

MIT License

### Citation Information

```bibtex
@article{hendrycks2019robustness,
  title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations},
  author={Dan Hendrycks and Thomas Dietterich},
  journal={International Conference on Learning Representations},
  year={2019}
}
```

### Contributions

This compact version was created to provide an accessible subset of ImageNet-C for rapid prototyping and development.