--- license: mit tags: - image-classification - computer-vision - imagenet-c --- # Nano ImageNet-C (Severity 5) This is a randomly sampled subset of the ImageNet-C dataset, containing 5,000 images exclusively from corruption **severity level 5**. It is designed for efficient testing and validation of model robustness. 这是一个从 ImageNet-C 数据集中随机抽样的子集,包含 5000 张仅来自损坏等级为 **5** 的图像。它旨在用于高效地测试和验证模型的鲁棒性。 ## How to Generate / 如何生成 This dataset was generated using the `create_nano_dataset.py` script included in this repository. To ensure reproducibility, the following parameters were used: 本数据集使用此仓库中包含的 `create_nano_dataset.py` 脚本生成。为确保可复现性,生成时使用了以下参数: - **Source Dataset / 源数据集**: The full ImageNet-C dataset is required. / 需要完整的 ImageNet-C 数据集。 - **Random Seed / 随机种子**: `7600` - **Python Version / Python 版本**: `3.10.14` ## Dataset Structure / 数据集结构 The dataset is provided as a single `.tar` file named `nano-imagenet-c.tar` in the `webdataset` format. The internal structure preserves the original ImageNet-C hierarchy: `corruption_type/class_name/image.jpg`. 数据集以 `webdataset` 格式打包在名为 `nano-imagenet-c.tar` 的单个 `.tar` 文件中。其内部结构保留了原始 ImageNet-C 的层次结构:`corruption_type/class_name/image.jpg`。 ## Citation / 引用 If you use this dataset, please cite the original ImageNet-C paper: 如果您使用此数据集,请引用原始 ImageNet-C 的论文: ```bibtex @inproceedings{danhendrycks2019robustness, title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations}, author={Dan Hendrycks and Thomas Dietterich}, booktitle={International Conference on Learning Representations}, year={2019}, url={https://openreview.net/forum?id=HJz6tiCqYm}, } ```