File size: 2,022 Bytes
1628201
 
 
 
 
 
 
 
 
 
 
 
e5b0a54
1628201
e5b0a54
 
 
 
 
 
 
 
9b9a865
1628201
9b9a865
 
 
 
 
1628201
 
9b9a865
 
 
e5b0a54
9b9a865
 
1628201
9b9a865
 
 
e5b0a54
 
9b9a865
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
pretty_name: MultiCaRe Cases
license: cc-by-4.0
task_categories:
  - text-classification
  - text-retrieval
language:
  - en
size_categories:
  - 100K<n<1M
---

# MultiCaRe: Open-Source Clinical Case Dataset

MultiCaRe is an open-source, multimodal clinical case dataset derived from PubMed Central’s Open Access (OA) Case Report articles. It links de-identified case narratives to figure images/captions and article-level metadata, enabling cross-modal supervision and retrieval.

- Source and process: OA case reports from PMC; parsed metadata and abstracts; extracted case narratives; downloaded and processed figures; aligned captions; curated image taxonomy (>140 classes).
- Scale: 85k+ articles with 110k+ patient mentions and 160k+ images (v2.0).
- Tasks enabled: narrative classification, retrieval, summarization; multimodal modeling with image joins; VQA/doc-QA with figure references.
- Citation: Paper — https://www.mdpi.com/2306-5729/10/8/123; Zenodo — https://zenodo.org/records/13936721.

This repository: per-case dataset
Per-case clinical narratives and demographics extracted from case reports.

Schema
- case_id: case identifier (joins to images.patient_id)
- article_id: PMCID (joins to articles.article_id)
- case_text: clinical case narrative
- age: age in years (0 if <1 y.o.)
- gender: Female, Male, Transgender, Unknown

Quick start
```python
from datasets import load_dataset
cases = load_dataset("openmed-community/multicare-cases", split="train")
print(cases[0]["case_text"][:600])
```

Join with images
```python
from datasets import load_dataset
cases = load_dataset("openmed-community/multicare-cases", split="train")
imgs  = load_dataset("openmed-community/multicare-images", split="train")

cid = cases[0]["case_id"]
imgs_for_case = imgs.filter(lambda e: e["patient_id"] == cid)
imgs_for_case[0]["image"].show()
```

Notes
- No official splits; recommend patient/article-level splitting to avoid leakage.
- Per-item OA licenses are provided at the image level and via articles.