--- language: - hi tags: - audio - speech - automatic-speech-recognition - speech-recognition task_categories: - automatic-speech-recognition pretty_name: Poseidon Hindi Speech Samples size_categories: - 1K 0.55** (*higher the better*) ### Language Distribution - **hi: 2,500 samples** ## Dataset Structure ### Data Fields - `audio`: Audio file metadata and bytes - `file_id`: Unique identifier for the audio file - `speaker_id`: Unique identifier for the speaker - `language_code`: ISO language code - `GT_transcript_native`: Ground truth transcript in Hindi - `GT_transcript_english`: Ground truth transcript in English - `spoken_transcript_native`: ASR-generated transcript in Hindi - `spoken_transcript_english`: ASR-generated transcript translated to English - `wer_score`: Word Error Rate score (range: [0,1]) - `cer_score`: Character Error Rate score (range: [0,1]) - `semantic_score`: Semantic similarity score (range: [0,1]) - `poseidon_score`: Overall quality score (range: [0,1]) - `duration`: Audio duration in seconds - `sampling_rate`: Audio sampling rate in Hz - `embedding`: a 192 dimensional embedding generated from https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb for the audio file - `jitter`: Jitter (local absolute) percentage - voice quality metric measuring pitch period variation (range: 0.75-4.47%, mean: 1.62%) ### Data Splits The dataset is delivered as a single `train` split (100% of the data). ## Usage ```python from datasets import load_dataset # Load the entire dataset dataset = load_dataset("psdn-ai/psdn-voice-samples-hindi") # Load specific split train_data = load_dataset("psdn-ai/psdn-voice-samples-hindi", split="train") # Access audio and metadata sample = dataset["train"][0] audio_array = sample["audio"]["array"] sampling_rate = sample["audio"]["sampling_rate"] transcript = sample["GT_transcript"] duration = sample["duration"] ``` ## Quality Metrics This dataset bundles multiple quality indicators: - **WER (Word Error Rate):** Measures word-level transcription accuracy - **CER (Character Error Rate):** Measures character-level transcription accuracy - **Semantic Score:** Measures semantic similarity between spoken and reference transcripts - **Poseidon Score:** Composite quality score derived from the above metrics ## Filtering Examples ```python from datasets import load_dataset dataset = load_dataset("psdn-ai/psdn-voice-samples-hindi", split="train") # Filter clips with low spam probability human_sounding = dataset.filter(lambda x: x["poseidon_score"] > 0.55) ``` ## Citation ```bibtex @dataset{poseidon_hindi_speech_dataset_2025, title={Poseidon Hindi Speech Dataset}, author={Poseidon-AI}, year={2025}, publisher={Poseidon-AI}, howpublished={\url{https://huggingface.co/datasets/psdn-ai/psdn-voice-samples-hindi}} } ``` ## Contact For questions or issues, please contact Poseidon team.