|
|
|
|
|
import os |
|
|
|
import cv2 as cv |
|
import numpy as np |
|
from python_speech_features import sigproc |
|
from python_speech_features import mfcc |
|
from sklearn import preprocessing |
|
|
|
|
|
def wave2spectrum(sample_rate, wave, winlen=0.025, winstep=0.01, nfft=512): |
|
"""计算功率谱图像""" |
|
frames = sigproc.framesig( |
|
sig=wave, |
|
frame_len=winlen * sample_rate, |
|
frame_step=winstep * sample_rate, |
|
winfunc=np.hamming |
|
) |
|
spectrum = sigproc.powspec( |
|
frames=frames, |
|
NFFT=nfft |
|
) |
|
spectrum = spectrum.T |
|
return spectrum |
|
|
|
|
|
def wave2spectrum_image( |
|
wave, sample_rate, |
|
xmax=10, xmin=-50, |
|
winlen=0.025, winstep=0.01, nfft=512, |
|
n_low_freq=None |
|
): |
|
""" |
|
:return: numpy.ndarray, shape=(time_step, n_dim) |
|
""" |
|
spectrum = wave2spectrum( |
|
sample_rate, wave, |
|
winlen=winlen, |
|
winstep=winstep, |
|
nfft=nfft, |
|
) |
|
spectrum = np.log(spectrum, out=np.zeros_like(spectrum), where=(spectrum != 0)) |
|
spectrum = spectrum.T |
|
gray = 255 * (spectrum - xmin) / (xmax - xmin) |
|
gray = np.array(gray, dtype=np.uint8) |
|
if n_low_freq is not None: |
|
gray = gray[:, :n_low_freq] |
|
|
|
return gray |
|
|
|
|
|
def compute_delta(specgram: np.ndarray, win_length: int = 5): |
|
""" |
|
:param specgram: shape=[time_steps, n_mels] |
|
:param win_length: |
|
:return: |
|
""" |
|
n = (win_length - 1) // 2 |
|
|
|
specgram = np.array(specgram, dtype=np.float32) |
|
|
|
kernel = np.arange(-n, n + 1, 1) |
|
kernel = np.reshape(kernel, newshape=(2 * n + 1, 1)) |
|
kernel = np.array(kernel, dtype=np.float32) / 10 |
|
|
|
delta = cv.filter2D( |
|
src=specgram, |
|
ddepth=cv.CV_32F, |
|
kernel=kernel, |
|
) |
|
return delta |
|
|
|
|
|
def delta_mfcc_feature(signal, sample_rate): |
|
""" |
|
为 GMM UBM 声纹识别模型, 编写此代码. |
|
|
|
https://github.com/pventrella20/Speaker_identification_-GMM-UBM- |
|
https://github.com/MChamith/Speaker_verification_gmm_ubm |
|
|
|
:param signal: np.ndarray |
|
:param sample_rate: frequenza del file audio |
|
:return: |
|
""" |
|
|
|
|
|
mfcc_feat = mfcc( |
|
signal=signal, |
|
samplerate=sample_rate, |
|
winlen=0.025, |
|
winstep=0.01, |
|
numcep=20, |
|
appendEnergy=True |
|
) |
|
|
|
mfcc_feat = preprocessing.scale(mfcc_feat) |
|
delta = compute_delta(mfcc_feat) |
|
combined = np.hstack(tup=(mfcc_feat, delta)) |
|
return combined |
|
|
|
|
|
if __name__ == '__main__': |
|
pass |
|
|