#!/usr/bin/python3 # -*- coding: utf-8 -*- import argparse import asyncio from enum import Enum from io import BytesIO import os from pathlib import Path import shutil import sys from typing import List import uuid pwd = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(pwd, "../")) import edge_tts import librosa import librosa.display import matplotlib.pyplot as plt import numpy as np import streamlit as st from streamlit_shortcuts import shortcut_button from project_settings import project_path, temp_dir # ENTRYPOINT ["streamlit", "run", "streamlit/nx_noise_app.py", "--server.port=8501", "--server.address=0.0.0.0"] # streamlit run streamlit/nx_noise_app.py --server.port=8501 --server.address=0.0.0.0 def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--src_dir", default=(project_path / "data/speech/en-PH/2025-01-14/2025-01-14").as_posix(), type=str ) parser.add_argument( "--tgt_dir", default=(project_path / "data/speech/en-PH/2025-01-14/2025-01-14/finished").as_posix(), type=str ) args = parser.parse_args() return args class Labels(Enum): noise = "noise" noisy = "noisy" async def edge_tts_text_to_speech(text: str, speaker: str = "zh-CN-XiaoxiaoNeural"): communicate = edge_tts.Communicate(text, speaker) audio_file = temp_dir / f"{uuid.uuid4()}.wav" audio_file = audio_file.as_posix() await communicate.save(audio_file) return audio_file def generate_spectrogram(filename: str, title: str = "Spectrogram"): signal, sample_rate = librosa.load(filename, sr=None) mag = np.abs(librosa.stft(signal)) # mag_db = librosa.amplitude_to_db(mag, ref=np.max) mag_db = librosa.amplitude_to_db(mag, ref=20) plt.figure(figsize=(10, 4)) librosa.display.specshow(mag_db, sr=sample_rate) plt.title(title) buf = BytesIO() plt.savefig(buf, format="png", bbox_inches="tight") plt.close() buf.seek(0) return buf def when_click_annotation_button(filename: Path, label: str, tgt_dir: Path): sub_tgt_dir = tgt_dir / label sub_tgt_dir.mkdir(parents=True, exist_ok=True) shutil.move(filename.as_posix(), sub_tgt_dir) def main(): args = get_args() src_dir = Path(args.src_dir) tgt_dir = Path(args.tgt_dir) # @st.cache_data # def get_shortcut_audio(): # result = { # Labels.noise.value: asyncio.run(edge_tts_text_to_speech("噪音")), # Labels.noisy.value: asyncio.run(edge_tts_text_to_speech("加噪语音")), # } # return result # # shortcut_audio = get_shortcut_audio() # 获取文件列表 audio_files: List[Path] = [filename for filename in src_dir.glob("**/*.wav")] if len(audio_files) == 0: st.error("没有未标注的音频了。") st.stop() audio_file: Path = audio_files[0] # session_state if "play_audio" not in st.session_state: st.session_state.play_audio = False # ui st.title("🔊 音频文件浏览器") column1, column2 = st.columns([4, 1]) with column1: st.audio(audio_file, format=f"{audio_file.suffix}", autoplay=True) with st.spinner("生成频谱图中..."): spectrogram = generate_spectrogram(audio_file) st.image(spectrogram, use_container_width=True) with column2: shortcut_button( label=Labels.noise.value, shortcut="1", on_click=when_click_annotation_button, kwargs={ "filename": audio_file, "label": Labels.noise.value, "tgt_dir": tgt_dir, }, type="primary", ) shortcut_button( shortcut="2", label=Labels.noisy.value, on_click=when_click_annotation_button, kwargs={ "filename": audio_file, "label": Labels.noisy.value, "tgt_dir": tgt_dir, }, type="primary", ) return if __name__ == "__main__": main()