# Adopted from lmms-eval from https://github.com/EvolvingLMMs-Lab/lmms-eval. Below is the original copyright: # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file was originally obtained from: # https://github.com/EvolvingLMMs-Lab/lmms-eval/blob/main/lmms_eval/models/llava_onevision.py # # Minor modification by Akira Kinoshita on 2025-07-24: import copy import json import logging import math import re import warnings from datetime import timedelta from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import transformers from accelerate import Accelerator, DistributedType, InitProcessGroupKwargs from accelerate.state import AcceleratorState from decord import VideoReader, cpu from packaging import version from tqdm import tqdm from transformers import AutoConfig from lmms_eval import utils from lmms_eval.api.instance import Instance from lmms_eval.api.model import lmms from lmms_eval.api.registry import register_model from lmms_eval.models.model_utils.load_video import read_video_pyav # Suppress warnings warnings.filterwarnings("ignore") # Configure logging eval_logger = logging.getLogger("lmms-eval") # Enable TF32 for CUDA torch.backends.cuda.matmul.allow_tf32 = True # Import LLaVA modules try: from llava.constants import ( DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX, ) from llava.conversation import SeparatorStyle, conv_templates from llava.mm_utils import ( KeywordsStoppingCriteria, get_model_name_from_path, process_images, tokenizer_image_token, ) from llava.model.builder import load_pretrained_model except ImportError as e: eval_logger.debug(f"LLaVA is not installed. Please install LLaVA to use this model.\nError: {e}") # Determine best attention implementation if version.parse(torch.__version__) >= version.parse("2.1.2"): best_fit_attn_implementation = "sdpa" else: best_fit_attn_implementation = "eager" @register_model("llava_onevision") class Llava_OneVision(lmms): """ Llava Model """ def __init__( self, pretrained: str = "lmms-lab/llava-onevision-qwen2-7b-ov", truncation: Optional[bool] = True, device: Optional[str] = "cuda:0", batch_size: Optional[Union[int, str]] = 1, model_name: Optional[str] = None, attn_implementation: Optional[str] = best_fit_attn_implementation, device_map: Optional[str] = "cuda:0", conv_template: Optional[str] = "qwen_1_5", use_cache: Optional[bool] = True, truncate_context: Optional[bool] = False, # whether to truncate the context in generation, set it False for LLaVA-1.6 customized_config: Optional[str] = None, # ends in json max_frames_num: Optional[int] = 32, mm_spatial_pool_stride: Optional[int] = 2, mm_spatial_pool_mode: Optional[str] = "bilinear", token_strategy: Optional[str] = "single", # could be "single" or "multiple", "multiple" denotes adding multiple tokens for each frame video_decode_backend: str = "decord", **kwargs, ) -> None: super().__init__() # Do not use kwargs for now assert kwargs == {}, f"Unexpected kwargs: {kwargs}" accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52)) accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs]) if accelerator.num_processes > 1: self._device = torch.device(f"cuda:{accelerator.local_process_index}") self.device_map = f"cuda:{accelerator.local_process_index}" elif accelerator.num_processes == 1 and device_map == "auto": self._device = torch.device(device) self.device_map = device_map else: self._device = torch.device(f"cuda:{accelerator.local_process_index}") self.device_map = f"cuda:{accelerator.local_process_index}" llava_model_args = { "multimodal": True, } if customized_config is not None: llava_model_args["customized_config"] = customized_config if attn_implementation is not None: llava_model_args["attn_implementation"] = attn_implementation if "use_flash_attention_2" in kwargs: llava_model_args["use_flash_attention_2"] = kwargs["use_flash_attention_2"] model_name = model_name if model_name is not None else get_model_name_from_path(pretrained) self.pretrained = pretrained self.token_strategy = token_strategy self.max_frames_num = max_frames_num self.mm_spatial_pool_stride = mm_spatial_pool_stride self.mm_spatial_pool_mode = mm_spatial_pool_mode self.video_decode_backend = video_decode_backend overwrite_config = {} overwrite_config["mm_spatial_pool_stride"] = self.mm_spatial_pool_stride overwrite_config["mm_spatial_pool_mode"] = self.mm_spatial_pool_mode cfg_pretrained = AutoConfig.from_pretrained(self.pretrained) llava_model_args["overwrite_config"] = overwrite_config try: # Try to load the model with the multimodal argument self._tokenizer, self._model, self._image_processor, self._max_length = load_pretrained_model(pretrained, None, model_name, device_map=self.device_map, **llava_model_args) except TypeError: # for older versions of LLaVA that don't have multimodal argument llava_model_args.pop("multimodal", None) self._tokenizer, self._model, self._image_processor, self._max_length = load_pretrained_model(pretrained, None, model_name, device_map=self.device_map, **llava_model_args) self._config = self._model.config self.model.eval() self.truncation = truncation self.batch_size_per_gpu = int(batch_size) self.conv_template = conv_template self.use_cache = use_cache self.truncate_context = truncate_context assert self.batch_size_per_gpu == 1, "Llava currently does not support batched generation. See https://github.com/haotian-liu/LLaVA/issues/754. HF Llava also has this issue." if accelerator.num_processes > 1: assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported." # If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model # Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works # I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work. if accelerator.distributed_type == DistributedType.DEEPSPEED: kwargs = { "train_micro_batch_size_per_gpu": self.batch_size_per_gpu, "train_batch_size": self.batch_size_per_gpu * accelerator.num_processes, } AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs) eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0") if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED: self._model = accelerator.prepare(self.model) else: self._model = accelerator.prepare_model(self.model, evaluation_mode=True) self.accelerator = accelerator if self.accelerator.is_local_main_process: eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") self._rank = self.accelerator.local_process_index self._world_size = self.accelerator.num_processes elif accelerator.num_processes == 1 and device_map == "auto": eval_logger.info(f"Using {accelerator.num_processes} devices with tensor parallelism") self._rank = 0 self._world_size = 1 else: eval_logger.info(f"Using single device: {self._device}") self.model.to(self._device) self._rank = 0 self._world_size = 1 @property def config(self): # return the associated transformers.AutoConfig for the given pretrained model. return self._config @property def tokenizer(self): return self._tokenizer @property def model(self): # returns the model, unwrapping it if using Accelerate if hasattr(self, "accelerator"): return self.accelerator.unwrap_model(self._model) else: return self._model @property def eot_token_id(self): # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* return self.tokenizer.eos_token_id @property def max_length(self): return self._max_length def pad_sequence(self, input_ids, batch_first, padding_value): if self.tokenizer.padding_side == "left": input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids] input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value) if self.tokenizer.padding_side == "left": input_ids = torch.flip(input_ids, [1]) return input_ids @property def batch_size(self): return self.batch_size_per_gpu @property def device(self): return self._device @property def rank(self): return self._rank @property def world_size(self): return self._world_size def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]: """ """ add_special_tokens = False if add_special_tokens is None else add_special_tokens encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) # left-truncate the encoded context to be at most `left_truncate_len` tokens long if left_truncate_len: encoding = encoding[-left_truncate_len:] return encoding def tok_decode(self, tokens): try: return self.tokenizer.decode(tokens) except: return self.tokenizer.decode([tokens]) def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: res = [] pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding") origin_image_aspect_ratio = getattr(self._config, "image_aspect_ratio", None) for contexts, doc_to_target, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]: visual = doc_to_visual(self.task_dict[task][split][doc_id]) if origin_image_aspect_ratio is not None and self._config.image_aspect_ratio != origin_image_aspect_ratio: self._config.image_aspect_ratio = origin_image_aspect_ratio eval_logger.info(f"Resetting image aspect ratio to {origin_image_aspect_ratio}") if visual is None or visual == []: visual = None task_type = "text" image_tensor = None else: if len(visual) > 1 or "image_aspect_ratio" not in self._config.__dict__: self._config.image_aspect_ratio = "pad" eval_logger.info(f"In Multi-Image setting, image aspect ratio: {self._config.image_aspect_ratio}") if "task_type" in self.metadata and self.metadata["task_type"] == "video" and "sample_frames" in self.metadata: assert type(visual) == list, "sample_frames must be specified for video task" sample_indices = np.linspace(0, len(visual) - 1, self.metadata["sample_frames"], dtype=int) visual = [visual[i] for i in sample_indices] assert len(visual) == self.metadata["sample_frames"] image_tensor = process_images(visual, self._image_processor, self._config) if type(image_tensor) is list: image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor] else: image_tensor = image_tensor.to(dtype=torch.float16, device=self.device) task_type = "video" # elif type(visual[0]) == PIL.Image.Image: elif isinstance(visual[0], PIL.Image.Image): # image_tensor = process_images(visual, self._image_processor, self._config) inputs = self._image_processor(visual) image_tensor = torch.tensor(inputs['pixel_values']).to(dtype=torch.float16, device=self.device) image_tensor = [image_tensor] # if type(image_tensor) is list: # image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor] # else: # image_tensor = image_tensor.to(dtype=torch.float16, device=self.device) task_type = "image" elif type(visual[0]) == str: image_tensor = [] try: if self.video_decode_backend == "decord": frames = self.load_video(visual, self.max_frames_num) elif self.video_decode_backend == "pyav": frames = read_video_pyav(visual[0], num_frm=self.max_frames_num) frames = self._image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].half().cuda() image_tensor.append(frames) except Exception as e: eval_logger.error(f"Error {e} in loading video") image_tensor = None task_type = "video" if image_tensor is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in contexts: placeholder_count = len(visual) if isinstance(visual, list) else 1 if task_type == "video": placeholder_count = len(frames) if self.token_strategy == "multiple" else 1 image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count image_tokens = " ".join(image_tokens) prompts_input = image_tokens + "\n" + contexts else: prompts_input = contexts if "llama_3" in self.conv_template: conv = copy.deepcopy(conv_templates[self.conv_template]) else: conv = conv_templates[self.conv_template].copy() conv.append_message(conv.roles[0], prompts_input) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.device) if type(doc_to_target) == str: continuation = doc_to_target else: continuation = doc_to_target(self.task_dict[task][split][doc_id]) conv.messages[-1][1] = continuation full_prompt = conv.get_prompt() full_input_ids = tokenizer_image_token(full_prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.device) labels = full_input_ids.clone() labels[0, : input_ids.shape[1]] = -100 kwargs = {} if task_type == "image": kwargs["image_sizes"] = [[v.size[0], v.size[1]] for v in visual] if isinstance(visual, list) else [[visual.size[0], visual.size[1]]] _image_grid_thw = torch.tensor(inputs['image_grid_thw'], dtype=torch.long) kwargs["image_grid_thws"] = [_image_grid_thw] elif task_type == "video": kwargs["modalities"] = ["video"] self._config.mm_spatial_pool_stride = self.mm_spatial_pool_stride self._config.mm_spatial_pool_mode = self.mm_spatial_pool_mode with torch.inference_mode(): outputs = self.model(input_ids=full_input_ids, labels=labels, images=image_tensor, use_cache=True, **kwargs) loss = outputs["loss"] logits = outputs["logits"] greedy_tokens = logits.argmax(dim=-1) cont_toks = full_input_ids[:, input_ids.shape[1] :] greedy_tokens = greedy_tokens[:, input_ids.shape[1] : full_input_ids.shape[1]] max_equal = (greedy_tokens == cont_toks).all() res.append((float(loss.item()), bool(max_equal))) pbar.update(1) pbar.close() return res def flatten(self, input): if not input or any(i is None for i in input): return [] new_list = [] for i in input: if i: for j in i: new_list.append(j) return new_list def load_video(self, video_path, max_frames_num): if type(video_path) == str: vr = VideoReader(video_path, ctx=cpu(0)) else: vr = VideoReader(video_path[0], ctx=cpu(0)) total_frame_num = len(vr) uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) frame_idx = uniform_sampled_frames.tolist() spare_frames = vr.get_batch(frame_idx).asnumpy() return spare_frames # (frames, height, width, channels) def generate_until(self, requests: List[Instance]) -> List[str]: res = [] def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = self.tok_encode(x[0]) return -len(toks), x[0] # we group requests by their generation_kwargs, # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling # in the same batch. metadata = requests[0].metadata re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1 pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding") origin_image_aspect_ratio = getattr(self._config, "image_aspect_ratio", None) for chunk in chunks: batched_contexts, all_gen_kwargs, batched_doc_to_visual, batched_doc_id, batched_task, batched_split = zip(*chunk) task = batched_task[0] split = batched_split[0] batched_visuals = [batched_doc_to_visual[0](self.task_dict[task][split][ids]) for ids in batched_doc_id] # [B, N] assert len(batched_visuals) == 1 # we assume all gen kwargs in the batch are the same # this is safe to assume because the `grouper` object ensures it. gen_kwargs = all_gen_kwargs[0] if "until" in gen_kwargs: gen_kwargs.pop("until") question_input = [] # import ipdb; ipdb.set_trace() for visual, context in zip(batched_visuals, batched_contexts): if origin_image_aspect_ratio is not None and self._config.image_aspect_ratio != origin_image_aspect_ratio: self._config.image_aspect_ratio = origin_image_aspect_ratio eval_logger.info(f"Resetting image aspect ratio to {origin_image_aspect_ratio}") if visual is None or visual == []: # for text-only tasks. visual = None task_type = "text" placeholder_count = 0 image_tensor = None else: if len(visual) > 1 or "image_aspect_ratio" not in self._config.__dict__: # for multi image case, we treat per image aspect ratio as "pad" by default. self._config.image_aspect_ratio = getattr(gen_kwargs, "image_aspect_ratio", "pad") eval_logger.info(f"In Multi-Image setting, image aspect ratio: {self._config.image_aspect_ratio}") if "task_type" in metadata and metadata["task_type"] == "video" and "sample_frames" in metadata: # overwrite logic for video task with multiple static image frames assert type(visual) == list, "sample_frames must be specified for video task" sample_indices = np.linspace(0, len(visual) - 1, metadata["sample_frames"], dtype=int) visual = [visual[i] for i in sample_indices] assert len(visual) == metadata["sample_frames"] image_tensor = process_images(visual, self._image_processor, self._config) if type(image_tensor) is list: image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor] else: image_tensor = image_tensor.to(dtype=torch.float16, device=self.device) task_type = "video" placeholder_count = 1 elif type(visual[0]) == PIL.Image.Image: # For image, multi-image tasks # image_tensor = process_images(visual, self._image_processor, self._config) inputs = self._image_processor(visual) image_tensor = torch.tensor(inputs['pixel_values']).to(dtype=torch.float16, device=self.device) image_tensor = [image_tensor] if type(image_tensor) is list: image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor] else: image_tensor = image_tensor.to(dtype=torch.float16, device=self.device) task_type = "image" placeholder_count = len(visual) if isinstance(visual, list) else 1 elif type(visual[0]) == str: # For video task image_tensor = [] try: if self.video_decode_backend == "decord": frames = self.load_video(visual, self.max_frames_num) elif self.video_decode_backend == "pyav": frames = read_video_pyav(visual[0], num_frm=self.max_frames_num) frames = self._image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].half().cuda() image_tensor.append(frames) except Exception as e: eval_logger.error(f"Error {e} in loading video") image_tensor = None task_type = "video" placeholder_count = len(frames) if self.token_strategy == "multiple" else 1 if image_tensor is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in context: """ Three senarios: 1. No image, and there for, no image token should be added. 2. image token is already specified in the context, so we don't need to add it. 3. image token is not specified in the context and there is image inputs, so we need to add it. In this case, we add the image token at the beginning of the context and add a new line. 4. For video tasks, we could add a token or multiple tokens for each frame in the context. This depends on the training strategy and should balance in test to decide which is better """ # if task_type == "image": # indeed in multi-image case, not the video in frames. # image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count if isinstance(visual, list) else [DEFAULT_IMAGE_TOKEN] # elif task_type == "video": # image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count if self.token_strategy == "multiple" else [DEFAULT_IMAGE_TOKEN] image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count image_tokens = " ".join(image_tokens) question = image_tokens + "\n" + context else: question = context # This is much safer for llama3, as we now have some object type in it if "llama_3" in self.conv_template: conv = copy.deepcopy(conv_templates[self.conv_template]) else: conv = conv_templates[self.conv_template].copy() if utils.is_json(question): # conversational question input question = json.loads(question) for idx, item in enumerate(question): role = conv.roles[idx % 2] message = item["value"] conv.append_message(role, message) assert len(conv.messages) % 2 == 1 conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() question_input.append(prompt_question) else: # only simple string for question conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() question_input.append(prompt_question) # preconfigure gen_kwargs with defaults if "max_new_tokens" not in gen_kwargs: gen_kwargs["max_new_tokens"] = 1024 if "temperature" not in gen_kwargs: gen_kwargs["temperature"] = 0 if "do_sample" not in gen_kwargs: gen_kwargs["do_sample"] = False if "top_p" not in gen_kwargs: gen_kwargs["top_p"] = None if "num_beams" not in gen_kwargs: gen_kwargs["num_beams"] = 1 input_ids_list = [tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") for prompt in question_input] pad_token_ids = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id input_ids = self.pad_sequence(input_ids_list, batch_first=True, padding_value=pad_token_ids).to(self.device) attention_masks = input_ids.ne(pad_token_ids).to(self.device) if task_type == "image": gen_kwargs["image_sizes"] = [batched_visuals[0][idx].size for idx in range(len(batched_visuals[0]))] _image_grid_thw = torch.tensor(inputs['image_grid_thw'], dtype=torch.long) gen_kwargs["image_grid_thws"] = [_image_grid_thw] elif task_type == "video": stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids) gen_kwargs["modalities"] = ["video"] gen_kwargs["stopping_criteria"] = [stopping_criteria] self._config.mm_spatial_pool_stride = self.mm_spatial_pool_stride self._config.mm_spatial_pool_mode = self.mm_spatial_pool_mode # These steps are not in LLaVA's original code, but are necessary for generation to work # TODO: attention to this major generation step... if "image_aspect_ratio" in gen_kwargs.keys(): gen_kwargs.pop("image_aspect_ratio") try: with torch.inference_mode(): cont = self.model.generate(input_ids, attention_mask=attention_masks, pad_token_id=pad_token_ids, images=image_tensor, use_cache=self.use_cache, **gen_kwargs) # cont = self.model.generate(qwen_input_ids, pad_token_id=pad_token_ids, images=image_tensor, use_cache=self.use_cache, **gen_kwargs) text_outputs = self.tokenizer.batch_decode(cont, skip_special_tokens=True) except Exception as e: raise e text_outputs = [response.strip() for response in text_outputs] res.extend(text_outputs) self.cache_hook.add_partial("generate_until", (context, gen_kwargs), text_outputs) pbar.update(1) # reorder this group of results back to original unsorted form res = re_ords.get_original(res) pbar.close() return res def generate_until_multi_round(self, requests: List[Instance]) -> List[str]: res = [] def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = self.tok_encode(x[0]) return -len(toks), x[0] # we group requests by their generation_kwargs, # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling # in the same batch. metadata = requests[0].metadata re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1 pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding") origin_image_aspect_ratio = getattr(self._config, "image_aspect_ratio", None) for chunk in chunks: batched_contexts, all_gen_kwargs, batched_doc_to_visual, batched_doc_to_text, batched_doc_id, batched_task, batched_split = zip(*chunk) task = batched_task[0] split = batched_split[0] batched_visuals = [batched_doc_to_visual[0](self.task_dict[task][split][ids]) for ids in batched_doc_id] # [B, N] assert len(batched_visuals) == 1 # we assume all gen kwargs in the batch are the same # this is safe to assume because the `grouper` object ensures it. gen_kwargs = all_gen_kwargs[0] if "until" in gen_kwargs: gen_kwargs.pop("until") # multi round inference: terminate when receiving signal from the doc_to_text round_idx = 0 batched_round_res = [] batched_previous_round_info = None while True: question_input = [] if round_idx != 0: # get current round visual and context from doc_to_text function batched_visuals, batched_contexts, batched_terminal_singal, batched_round_res, batched_previous_round_info = list( zip( *[ batched_doc_to_text[0]( self.task_dict[task][split][ids], previous_output=[round_res[ids_idx] for round_res in batched_round_res], round_idx=round_idx, previous_round_info=batched_previous_round_info[ids_idx] if batched_previous_round_info is not None else None, ) for ids_idx, ids in enumerate(batched_doc_id) ] ) ) # import ipdb; ipdb.set_trace() batched_round_res = list(zip(*batched_round_res)) # [(r1_1, r1_2), (r2_1, r2_2), ...] if batched_terminal_singal[0]: # terminal signal from doc_to_text function break for visual, context in zip(batched_visuals, batched_contexts): if origin_image_aspect_ratio is not None and self._config.image_aspect_ratio != origin_image_aspect_ratio: self._config.image_aspect_ratio = origin_image_aspect_ratio eval_logger.info(f"Resetting image aspect ratio to {origin_image_aspect_ratio}") if visual is None or visual == []: # for text-only tasks. visual = None task_type = "text" placeholder_count = 0 image_tensor = None else: if len(visual) > 1 or "image_aspect_ratio" not in self._config.__dict__: # for multi image case, we treat per image aspect ratio as "pad" by default. self._config.image_aspect_ratio = getattr(gen_kwargs, "image_aspect_ratio", "pad") eval_logger.info(f"In Multi-Image setting, image aspect ratio: {self._config.image_aspect_ratio}") if "task_type" in metadata and metadata["task_type"] == "video" and "sample_frames" in metadata: # overwrite logic for video task with multiple static image frames assert type(visual) == list, "sample_frames must be specified for video task" sample_indices = np.linspace(0, len(visual) - 1, metadata["sample_frames"], dtype=int) visual = [visual[i] for i in sample_indices] assert len(visual) == metadata["sample_frames"] image_tensor = process_images(visual, self._image_processor, self._config) if type(image_tensor) is list: image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor] else: image_tensor = image_tensor.to(dtype=torch.float16, device=self.device) task_type = "video" placeholder_count = 1 elif type(visual[0]) == PIL.Image.Image: # For image, multi-image tasks image_tensor = process_images(visual, self._image_processor, self._config) if type(image_tensor) is list: image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor] else: image_tensor = image_tensor.to(dtype=torch.float16, device=self.device) task_type = "image" placeholder_count = len(visual) if isinstance(visual, list) else 1 elif type(visual[0]) == str: # For video task image_tensor = [] try: if self.video_decode_backend == "decord": frames = self.load_video(visual, self.max_frames_num) elif self.video_decode_backend == "pyav": frames = read_video_pyav(visual[0], num_frm=self.max_frames_num) frames = self._image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].half().cuda() image_tensor.append(frames) except Exception as e: eval_logger.error(f"Error {e} in loading video") image_tensor = None task_type = "video" placeholder_count = len(frames) if self.token_strategy == "multiple" else 1 if image_tensor is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in context: """ Three senarios: 1. No image, and there for, no image token should be added. 2. image token is already specified in the context, so we don't need to add it. 3. image token is not specified in the context and there is image inputs, so we need to add it. In this case, we add the image token at the beginning of the context and add a new line. 4. For video tasks, we could add a token or multiple tokens for each frame in the context. This depends on the training strategy and should balance in test to decide which is better """ # if task_type == "image": # indeed in multi-image case, not the video in frames. # image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count if isinstance(visual, list) else [DEFAULT_IMAGE_TOKEN] # elif task_type == "video": # image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count if self.token_strategy == "multiple" else [DEFAULT_IMAGE_TOKEN] image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count image_tokens = " ".join(image_tokens) question = image_tokens + "\n" + context else: question = context # This is much safer for llama3, as we now have some object type in it if "llama_3" in self.conv_template: conv = copy.deepcopy(conv_templates[self.conv_template]) else: conv = conv_templates[self.conv_template].copy() if utils.is_json(question): # conversational question input question = json.loads(question) for idx, item in enumerate(question): role = conv.roles[idx % 2] message = item["value"] conv.append_message(role, message) assert len(conv.messages) % 2 == 1 conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() question_input.append(prompt_question) else: # only simple string for question conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() question_input.append(prompt_question) # preconfigure gen_kwargs with defaults if "max_new_tokens" not in gen_kwargs: gen_kwargs["max_new_tokens"] = 1024 if "temperature" not in gen_kwargs: gen_kwargs["temperature"] = 0 if "do_sample" not in gen_kwargs: gen_kwargs["do_sample"] = False if "top_p" not in gen_kwargs: gen_kwargs["top_p"] = None if "num_beams" not in gen_kwargs: gen_kwargs["num_beams"] = 1 input_ids_list = [tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") for prompt in question_input] pad_token_ids = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id input_ids = self.pad_sequence(input_ids_list, batch_first=True, padding_value=pad_token_ids).to(self.device) attention_masks = input_ids.ne(pad_token_ids).to(self.device) if task_type == "image": gen_kwargs["image_sizes"] = [batched_visuals[0][idx].size for idx in range(len(batched_visuals[0]))] elif task_type == "video": stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids) gen_kwargs["modalities"] = ["video"] gen_kwargs["stopping_criteria"] = [stopping_criteria] self._config.mm_spatial_pool_stride = self.mm_spatial_pool_stride self._config.mm_spatial_pool_mode = self.mm_spatial_pool_mode # These steps are not in LLaVA's original code, but are necessary for generation to work # TODO: attention to this major generation step... if "image_aspect_ratio" in gen_kwargs.keys(): gen_kwargs.pop("image_aspect_ratio") try: with torch.inference_mode(): cont = self.model.generate(input_ids, attention_mask=attention_masks, pad_token_id=pad_token_ids, images=image_tensor, use_cache=self.use_cache, **gen_kwargs) # cont = self.model.generate(qwen_input_ids, pad_token_id=pad_token_ids, images=image_tensor, use_cache=self.use_cache, **gen_kwargs) text_outputs = self.tokenizer.batch_decode(cont, skip_special_tokens=True) except Exception as e: raise e text_outputs = [response.strip() for response in text_outputs] batched_round_res.append(text_outputs) round_idx += 1 res.extend(list(zip(*batched_round_res))) self.cache_hook.add_partial("generate_until_multi_round", (context, gen_kwargs), batched_round_res) pbar.update(1) # reorder this group of results back to original unsorted form res = re_ords.get_original(res) pbar.close() return res