File size: 6,863 Bytes
c96df66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import re
import string
from collections import Counter
from typing import Dict, List

import jieba
from fuzzywuzzy import fuzz
from rouge import Rouge


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))

def normalize_zh_answer(s):
    """Lower text and remove punctuation, extra whitespace."""

    def white_space_fix(text):
        return "".join(text.split())

    def remove_punc(text):
        cn_punctuation = "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
        all_punctuation = set(string.punctuation + cn_punctuation)
        return "".join(ch for ch in text if ch not in all_punctuation)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_punc(lower(s)))


class Metric:
    @classmethod
    def compute(cls, predictions: List[str], answers: List[List[str]], metric_list: List[str], **kwargs) -> Dict[str, float]:
        metric_list = [metric.lower() for metric in metric_list]
        cls._check_metric_list(metric_list)

        result = {} 
        for metric in metric_list:
            total_score = 0
            for idx, (prediction, ground_truths) in enumerate(zip(predictions, answers)):
                score = 0
                for ground_truth in ground_truths:
                    score = max(score, getattr(cls, metric)(prediction, ground_truth, all_classes=kwargs["all_classes"][idx]))
                total_score += score
            result[metric] = total_score / len(predictions)

        return result

    @staticmethod
    def _check_metric_list(metric_list: List[str]):
        for metric in metric_list:
            assert hasattr(Metric, metric), f"Metric {metric} not found"

    @staticmethod
    def rouge_score(prediction: str, ground_truth: str, **kwargs) -> float:
        rouge = Rouge()
        try:
            scores = rouge.get_scores([prediction], [ground_truth], avg=True)
        except:
            return 0.0
        return scores["rouge-l"]["f"]
    
    @staticmethod
    def rouge_zh_score(prediction: str, ground_truth: str, **kwargs) -> float:
        prediction = " ".join(list(jieba.cut(prediction, cut_all=False)))
        ground_truth = " ".join(list(jieba.cut(ground_truth, cut_all=False))) 
        score = Metric.rouge_score(prediction, ground_truth)
        return score

    @staticmethod
    def f1_score(prediction: str, ground_truth: str, **kwargs) -> float:
        common = Counter(prediction) & Counter(ground_truth)
        num_same = sum(common.values())
        if num_same == 0:
            return 0
        precision = 1.0 * num_same / len(prediction)
        recall = 1.0 * num_same / len(ground_truth)
        f1 = (2 * precision * recall) / (precision + recall)
        return f1

    @staticmethod
    def qa_f1_score(prediction: str, ground_truth: str, **kwargs) -> float:
        normalized_prediction = normalize_answer(prediction)
        normalized_ground_truth = normalize_answer(ground_truth)

        prediction_tokens = normalized_prediction.split()
        ground_truth_tokens = normalized_ground_truth.split()
        return Metric.f1_score(prediction_tokens, ground_truth_tokens)
    
    @staticmethod
    def qa_f1_zh_score(prediction, ground_truth, **kwargs):
        prediction_tokens = list(jieba.cut(prediction, cut_all=False))
        ground_truth_tokens = list(jieba.cut(ground_truth, cut_all=False))
        prediction_tokens = [normalize_zh_answer(token) for token in prediction_tokens]
        ground_truth_tokens = [normalize_zh_answer(token) for token in ground_truth_tokens]
        prediction_tokens = [token for token in prediction_tokens if len(token) > 0]
        ground_truth_tokens = [token for token in ground_truth_tokens if len(token) > 0]
        return Metric.f1_score(prediction_tokens, ground_truth_tokens)
    
    @staticmethod
    def classification_score(prediction: str, ground_truth: str, **kwargs) -> float:
        em_match_list = []
        all_classes = kwargs["all_classes"]
        for class_name in all_classes:
            if class_name in prediction:
                em_match_list.append(class_name)
        for match_term in em_match_list:
            if match_term in ground_truth and match_term != ground_truth:
                em_match_list.remove(match_term)
        if ground_truth in em_match_list:
            score = (1.0 / len(em_match_list))
        else:
            score = 0.0
        return score
    
    @staticmethod
    def retrieval_score(prediction: str, ground_truth: str, **kwargs) -> float:
        pattern = r'Paragraph (\d+)'
        matches = re.findall(pattern, ground_truth)
        ground_truth_id = matches[0]
        numbers = re.findall(r"\d+", prediction)
        right_num = 0
        for number in numbers:
            if str(number) == str(ground_truth_id):
                right_num += 1
        final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers)
        return float(final_score)
    
    @staticmethod
    def retrieval_zh_score(prediction: str, ground_truth: str, **kwargs) -> float:
        pattern = r'段落(\d+)'
        matches = re.findall(pattern, ground_truth)
        ground_truth_id = matches[0]
        numbers = re.findall(r"\d+", prediction)
        right_num = 0
        for number in numbers:
            if str(number) == str(ground_truth_id):
                right_num += 1
        final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers)
        return float(final_score)
    
    @staticmethod
    def count_score(prediction: str, ground_truth: str, **kwargs) -> float:
        numbers = re.findall(r"\d+", prediction)
        right_num = 0
        for number in numbers:
            if str(number) == str(ground_truth):
                right_num += 1
        final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers)
        return float(final_score)

    @staticmethod
    def code_edit_sim(prediction: str, ground_truth: str, **kwargs) -> float:
        all_lines = prediction.lstrip('\n').split('\n')
        prediction = ""
        for line in all_lines:
            if ('`' not in line) and ('#' not in line) and ('//' not in line):
                prediction = line
                break
        return (fuzz.ratio(prediction, ground_truth) / 100)