File size: 8,186 Bytes
c96df66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import math
import os

import torch
import torch.nn as nn
from accelerate import Accelerator
from tqdm import tqdm
from transformers import AutoTokenizer, LlamaForCausalLM, AutoModelForCausalLM

from src.model.super_tokenizer import SuperTokenizer

DTYPE_DICT = {
    "bf16": torch.bfloat16,
    "fp16": torch.float16,
    "fp32": torch.float32,
}


class LM(nn.Module):
    def __init__(
        self,
        model_name_or_path: str,
        super_tokenizer_name_or_path: str,
        cache_dir: str = None,
        super_tokenizer_num_hidden_layers: int = 6,
        use_flash_attention_2: bool = True,
        is_model_frozen: bool = True,
        dtype: str = "bf16",
        device_map=None,
        accelerator: Accelerator = None,
    ):
        super().__init__()

        # * set dtype
        if dtype not in DTYPE_DICT:
            raise ValueError(f"dtype must be one of {DTYPE_DICT.keys()}")
        dtype = DTYPE_DICT[dtype]

        # * load model and super_tokenizer
        self.model = LlamaForCausalLM.from_pretrained(
            model_name_or_path, 
            cache_dir=cache_dir, 
            local_files_only=True, 
            torch_dtype=dtype, 
            use_flash_attention_2=use_flash_attention_2, 
            device_map=device_map,
        )
        # self.model = AutoModelForCausalLM.from_pretrained(
        #     model_name_or_path,
        #     cache_dir=cache_dir, 
        #     local_files_only=True,
        #     torch_dtype=dtype, 
        #     trust_remote_code=True, 
        #     device_map=device_map,
        # )
        self.super_tokenizer = None
        if super_tokenizer_name_or_path != "no":
            self.super_tokenizer = SuperTokenizer.from_pretrained(
                super_tokenizer_name_or_path,
                cache_dir=cache_dir,
                local_files_only=True,
                torch_dtype=dtype,
                device_map=device_map,
                num_hidden_layers=super_tokenizer_num_hidden_layers,
            )

        # * load tokenzier
        self.tokenizer = AutoTokenizer.from_pretrained(
            "meta-llama/Llama-2-7b-chat-hf",
            cache_dir=cache_dir, 
            local_files_only=True, 
            use_fast=False,
        )
        self.tokenizer.pad_token = self.tokenizer.eos_token

        # * freeze model or not
        self.is_model_frozen = is_model_frozen
        if self.is_model_frozen:
            self.freeze_model()

        # * set accelerator
        self.accelerator = accelerator
        if device_map is None:
            if self.accelerator is not None:
                device = self.accelerator.device
            else:
                device = torch.device("cpu")
            
            self.model.to(device)
            if self.super_tokenizer is not None:
                self.super_tokenizer.to(device)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        super_input_ids=None,
        super_attention_mask=None,
        placeholder_indices=None,
        super_token_indices=None,
        labels=None,
    ):
        inputs_embeds = self.prepare_model_inputs_embeds(
            input_ids,
            super_input_ids,
            super_attention_mask,
            placeholder_indices,
            super_token_indices,
        )

        output = self.model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask, 
            labels=labels, 
        )

        return output

    def prepare_model_inputs_embeds(
        self,
        input_ids=None,
        super_input_ids=None,
        super_attention_mask=None,
        placeholder_indices=None,
        super_token_indices=None,
    ):
        inputs_embeds = self.model.get_input_embeddings()(input_ids)

        if self.super_tokenizer is not None and len(super_token_indices) != 0:
            super_inputs_embeds = self.super_tokenizer(
                super_input_ids,
                super_attention_mask,
                super_token_indices,
            )

            inputs_embeds = inputs_embeds.type_as(super_inputs_embeds)
            cur_idx = 0
            for i, idx_lst in enumerate(placeholder_indices):
                if len(idx_lst) == 0:
                    continue

                inputs_embeds[i][idx_lst] = super_inputs_embeds[cur_idx:cur_idx + len(idx_lst)]
                cur_idx += len(idx_lst)

        return inputs_embeds

    @torch.no_grad()
    def generate(self, dataloader, return_new_tokens_only=True, decode=True, **gen_kwargs):
        self.eval()

        all_generations = []
        for _, inputs in enumerate(tqdm(dataloader, desc='Generate')):
            inputs = self._move_to_device(inputs)  # * move to gpu
            input_ids = inputs["input_ids"]
            attention_mask = inputs["attention_mask"]
            super_input_ids = inputs["super_input_ids"]
            super_attention_mask = inputs["super_attention_mask"]
            placeholder_indices = inputs["placeholder_indices"]
            super_token_indices = inputs["super_token_indices"]

            inputs_embeds = self.prepare_model_inputs_embeds(
                input_ids=input_ids,
                super_input_ids=super_input_ids,
                super_attention_mask=super_attention_mask,
                placeholder_indices=placeholder_indices,
                super_token_indices=super_token_indices,
            )

            # * generate
            outputs = self.model.generate(
                input_ids=input_ids,
                inputs_embeds=inputs_embeds, 
                attention_mask=attention_mask, 
                use_cache=True,
                **gen_kwargs,
            )
            
            if return_new_tokens_only:
                start_idx = input_ids.shape[1]
                outputs = outputs[:, start_idx:]
            
            if self.accelerator is not None:
                outputs = outputs.contiguous()  # must be contiguous
                # FIXME: dim cannot be -1
                outputs = self.accelerator.pad_across_processes(outputs, pad_index=self.tokenizer.pad_token_id, dim=1)
                outputs = self.accelerator.gather_for_metrics(outputs)

            outputs = outputs.tolist()
            if decode:
                outputs = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
            
            all_generations.extend(outputs)

        return all_generations

    @torch.no_grad()
    def compute_perplexity(self, dataloader):
        self.eval()

        all_nlls = []
        for inputs in tqdm(dataloader):
            inputs = self._move_to_device(inputs)
            outputs = self.forward(**inputs)
            nll = outputs.loss

            if self.accelerator is not None:
                nll = self.accelerator.gather_for_metrics(nll).mean()
            
            all_nlls.append(nll.tolist())

        perplexity = math.exp(sum(all_nlls) / len(all_nlls))

        return perplexity

    def freeze_model(self):
        self.is_model_frozen = True
        for _, param in self.model.named_parameters():
            param.requires_grad = False

    def _move_to_device(self, inputs):
        for k, v in inputs.items():
            if isinstance(v, torch.Tensor):
                inputs[k] = v.to(self.device)
        return inputs

    @property
    def device(self):
        if self.accelerator is not None:
            return self.accelerator.device
        else:
            return torch.device("cpu")
        
    def gradient_checkpointing_enable(self):
        self.model.gradient_checkpointing_enable()
        self.super_tokenizer.gradient_checkpointing_enable()

    def save(self, output_dir, deepspeed=False):
        if self.super_tokenizer is not None:
            self.super_tokenizer.save_pretrained(os.path.join(output_dir, "super_tokenizer"))
            self.tokenizer.save_pretrained(os.path.join(output_dir, "super_tokenizer"))
        
        if not self.is_model_frozen:
            self.model.save_pretrained(
                os.path.join(output_dir, "model")
            )
            self.tokenizer.save_pretrained(
                os.path.join(output_dir, "model")
            )