rainym00d's picture
Upload folder using huggingface_hub
c96df66 verified
raw
history blame
8.19 kB
import math
import os
import torch
import torch.nn as nn
from accelerate import Accelerator
from tqdm import tqdm
from transformers import AutoTokenizer, LlamaForCausalLM, AutoModelForCausalLM
from src.model.super_tokenizer import SuperTokenizer
DTYPE_DICT = {
"bf16": torch.bfloat16,
"fp16": torch.float16,
"fp32": torch.float32,
}
class LM(nn.Module):
def __init__(
self,
model_name_or_path: str,
super_tokenizer_name_or_path: str,
cache_dir: str = None,
super_tokenizer_num_hidden_layers: int = 6,
use_flash_attention_2: bool = True,
is_model_frozen: bool = True,
dtype: str = "bf16",
device_map=None,
accelerator: Accelerator = None,
):
super().__init__()
# * set dtype
if dtype not in DTYPE_DICT:
raise ValueError(f"dtype must be one of {DTYPE_DICT.keys()}")
dtype = DTYPE_DICT[dtype]
# * load model and super_tokenizer
self.model = LlamaForCausalLM.from_pretrained(
model_name_or_path,
cache_dir=cache_dir,
local_files_only=True,
torch_dtype=dtype,
use_flash_attention_2=use_flash_attention_2,
device_map=device_map,
)
# self.model = AutoModelForCausalLM.from_pretrained(
# model_name_or_path,
# cache_dir=cache_dir,
# local_files_only=True,
# torch_dtype=dtype,
# trust_remote_code=True,
# device_map=device_map,
# )
self.super_tokenizer = None
if super_tokenizer_name_or_path != "no":
self.super_tokenizer = SuperTokenizer.from_pretrained(
super_tokenizer_name_or_path,
cache_dir=cache_dir,
local_files_only=True,
torch_dtype=dtype,
device_map=device_map,
num_hidden_layers=super_tokenizer_num_hidden_layers,
)
# * load tokenzier
self.tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Llama-2-7b-chat-hf",
cache_dir=cache_dir,
local_files_only=True,
use_fast=False,
)
self.tokenizer.pad_token = self.tokenizer.eos_token
# * freeze model or not
self.is_model_frozen = is_model_frozen
if self.is_model_frozen:
self.freeze_model()
# * set accelerator
self.accelerator = accelerator
if device_map is None:
if self.accelerator is not None:
device = self.accelerator.device
else:
device = torch.device("cpu")
self.model.to(device)
if self.super_tokenizer is not None:
self.super_tokenizer.to(device)
def forward(
self,
input_ids=None,
attention_mask=None,
super_input_ids=None,
super_attention_mask=None,
placeholder_indices=None,
super_token_indices=None,
labels=None,
):
inputs_embeds = self.prepare_model_inputs_embeds(
input_ids,
super_input_ids,
super_attention_mask,
placeholder_indices,
super_token_indices,
)
output = self.model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels,
)
return output
def prepare_model_inputs_embeds(
self,
input_ids=None,
super_input_ids=None,
super_attention_mask=None,
placeholder_indices=None,
super_token_indices=None,
):
inputs_embeds = self.model.get_input_embeddings()(input_ids)
if self.super_tokenizer is not None and len(super_token_indices) != 0:
super_inputs_embeds = self.super_tokenizer(
super_input_ids,
super_attention_mask,
super_token_indices,
)
inputs_embeds = inputs_embeds.type_as(super_inputs_embeds)
cur_idx = 0
for i, idx_lst in enumerate(placeholder_indices):
if len(idx_lst) == 0:
continue
inputs_embeds[i][idx_lst] = super_inputs_embeds[cur_idx:cur_idx + len(idx_lst)]
cur_idx += len(idx_lst)
return inputs_embeds
@torch.no_grad()
def generate(self, dataloader, return_new_tokens_only=True, decode=True, **gen_kwargs):
self.eval()
all_generations = []
for _, inputs in enumerate(tqdm(dataloader, desc='Generate')):
inputs = self._move_to_device(inputs) # * move to gpu
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
super_input_ids = inputs["super_input_ids"]
super_attention_mask = inputs["super_attention_mask"]
placeholder_indices = inputs["placeholder_indices"]
super_token_indices = inputs["super_token_indices"]
inputs_embeds = self.prepare_model_inputs_embeds(
input_ids=input_ids,
super_input_ids=super_input_ids,
super_attention_mask=super_attention_mask,
placeholder_indices=placeholder_indices,
super_token_indices=super_token_indices,
)
# * generate
outputs = self.model.generate(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
use_cache=True,
**gen_kwargs,
)
if return_new_tokens_only:
start_idx = input_ids.shape[1]
outputs = outputs[:, start_idx:]
if self.accelerator is not None:
outputs = outputs.contiguous() # must be contiguous
# FIXME: dim cannot be -1
outputs = self.accelerator.pad_across_processes(outputs, pad_index=self.tokenizer.pad_token_id, dim=1)
outputs = self.accelerator.gather_for_metrics(outputs)
outputs = outputs.tolist()
if decode:
outputs = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
all_generations.extend(outputs)
return all_generations
@torch.no_grad()
def compute_perplexity(self, dataloader):
self.eval()
all_nlls = []
for inputs in tqdm(dataloader):
inputs = self._move_to_device(inputs)
outputs = self.forward(**inputs)
nll = outputs.loss
if self.accelerator is not None:
nll = self.accelerator.gather_for_metrics(nll).mean()
all_nlls.append(nll.tolist())
perplexity = math.exp(sum(all_nlls) / len(all_nlls))
return perplexity
def freeze_model(self):
self.is_model_frozen = True
for _, param in self.model.named_parameters():
param.requires_grad = False
def _move_to_device(self, inputs):
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(self.device)
return inputs
@property
def device(self):
if self.accelerator is not None:
return self.accelerator.device
else:
return torch.device("cpu")
def gradient_checkpointing_enable(self):
self.model.gradient_checkpointing_enable()
self.super_tokenizer.gradient_checkpointing_enable()
def save(self, output_dir, deepspeed=False):
if self.super_tokenizer is not None:
self.super_tokenizer.save_pretrained(os.path.join(output_dir, "super_tokenizer"))
self.tokenizer.save_pretrained(os.path.join(output_dir, "super_tokenizer"))
if not self.is_model_frozen:
self.model.save_pretrained(
os.path.join(output_dir, "model")
)
self.tokenizer.save_pretrained(
os.path.join(output_dir, "model")
)