import torch import torch.nn as nn from transformers import LlamaModel from transformers.models.llama.configuration_llama import LlamaConfig class SuperTokenizer(LlamaModel): def __init__(self, config: LlamaConfig): super().__init__(config) self.batch_size = 1 self.my_pooler = nn.Linear(config.hidden_size, 4096) def forward(self, input_ids, attention_mask, super_token_indices, **kwargs): hidden_state = [] for i in range(0, input_ids.shape[0], self.batch_size): end_index = min(i + self.batch_size, input_ids.shape[0]) output = super().forward( input_ids[i:end_index], attention_mask[i:end_index], **kwargs, ) for j in range(end_index - i): hidden_state.append( output.last_hidden_state[j][super_token_indices[i + j]] ) embedding = torch.cat(hidden_state, dim=0).contiguous() return embedding