File size: 4,322 Bytes
58150e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
from PIL import Image
import datasets
import zipfile
import os
class AWA2(datasets.GeneratorBasedBuilder):
"""
The Animals with Attributes 2 (AwA2) dataset provides images across 50 animal classes, useful for attribute-based classification
and zero-shot learning research. See https://cvml.ista.ac.at/AwA2/ for more information.
"""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description="""The AWA2 dataset is an image classification dataset with images of 50 classes, primarily used in attribute-based image recognition research. See https://cvml.ista.ac.at/AwA2/ for more information.""",
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(names=['antelope', 'grizzly+bear', 'killer+whale', 'beaver',
'dalmatian', 'persian+cat', 'horse', 'german+shepherd',
'blue+whale', 'siamese+cat', 'skunk', 'mole', 'tiger',
'hippopotamus', 'leopard', 'moose', 'spider+monkey',
'humpback+whale', 'elephant', 'gorilla', 'ox', 'fox', 'sheep',
'seal', 'chimpanzee', 'hamster', 'squirrel', 'rhinoceros',
'rabbit', 'bat', 'giraffe', 'wolf', 'chihuahua', 'rat',
'weasel', 'otter', 'buffalo', 'zebra', 'giant+panda', 'deer',
'bobcat', 'pig', 'lion', 'mouse', 'polar+bear', 'collie',
'walrus', 'raccoon', 'cow', 'dolphin']),
}
),
supervised_keys=("image", "label"),
homepage="https://cvml.ista.ac.at/AwA2/",
citation="""@ARTICLE{8413121,
author={Xian, Yongqin and Lampert, Christoph H. and Schiele, Bernt and Akata, Zeynep},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly},
year={2019},
volume={41},
number={9},
pages={2251-2265},
keywords={Semantics;Visualization;Task analysis;Training;Fish;Protocols;Learning systems;Generalized zero-shot learning;transductive learning;image classification;weakly-supervised learning},
doi={10.1109/TPAMI.2018.2857768}}"""
)
def _split_generators(self, dl_manager):
# Download the dataset
archive_path = dl_manager.download({
"data": "https://cvml.ista.ac.at/AwA2/AwA2-data.zip"
})
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"archive_paths": archive_path}
)
]
def _generate_examples(self, archive_path):
# Open the zip file
with zipfile.ZipFile(archive_path, "r") as z:
# Use the class names from DatasetInfo for consistent label order
class_names = self._info().features["label"].names
# Create a mapping from class name to label index based on DatasetInfo order
label_mapping = {name: idx for idx, name in enumerate(class_names)}
root_dir = "Animals_with_Attributes2/JPEGImages/"
for class_name in class_names:
class_dir = os.path.join(root_dir, class_name)
# Iterate through each image in the class folder
for image_path in z.namelist():
if image_path.startswith(class_dir) and image_path.endswith(".jpg"):
with z.open(image_path) as image_file:
image = Image.open(image_file).convert("RGB")
label = label_mapping[class_name]
yield image_path, {"image": image, "label": label}
|