Datasets:
File size: 5,636 Bytes
3ba0e9a 7b4f168 4ceebd8 7b2f7ab 3ba0e9a 7b2f7ab 51c26ea 3ba0e9a 46ccd56 3ba0e9a d90bbf7 3ba0e9a d90bbf7 3ba0e9a 46ccd56 3ba0e9a d90bbf7 326fcce d90bbf7 326fcce b13b351 d90bbf7 b13b351 46ccd56 b13b351 d90bbf7 b13b351 c31143f d90bbf7 51c26ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
language:
- ar
configs:
- config_name: default
data_files:
- split: Amiri
path: Amiri/*.csv
- split: Sakkal_Majalla
path: Sakkal_Majalla/*.csv
- split: Arial
path: Arial/*.csv
- split: Calibri
path: Calibri/*.csv
- split: Scheherazade_New
path: Scheherazade_New/*.csv
features:
text:
dtype: string
csv_options:
delimiter: ','
quotechar: '"'
encoding: utf-8
tags:
- dataset
- OCR
- Arabic
- Image_To_Text
license: apache-2.0
task_categories:
- image-to-text
pretty_name: 'SAND: A Large-Scale Synthetic Arabic OCR Corpus for Vision-Language Models'
size_categories:
- 100K<n<1M
---
# SARD: Synthetic Arabic Recognition Dataset
[](https://huggingface.co/datasets/riotu-lab/SAND)
[](https://github.com/riotu-lab/text2image)
## Overview
**SARD** (Synthetic Arabic Recognition Dataset) is a large-scale, synthetically generated dataset designed for training and evaluating Optical Character Recognition (OCR) models for Arabic text. This dataset addresses the critical need for comprehensive Arabic text recognition resources by providing controlled, diverse, and scalable training data that simulates real-world book layouts.
## Key Features
- **Massive Scale**: 743,000 document images containing 662.15 million words
- **Typographic Diversity**: Five distinct Arabic fonts (Amiri, Sakkal Majalla, Arial, Calibri, and Scheherazade New)
- **Structured Formatting**: Designed to mimic real-world book layouts with consistent typography
- **Clean Data**: Synthetically generated with no scanning artifacts, blur, or distortions
- **Content Diversity**: Text spans multiple domains including culture, literature, Shariah, social topics, and more
## Dataset Structure
The dataset is divided into five splits based on font name:
- **Amiri**: ~148,541 document images
- **Sakkal Majalla**: ~148,541 document images
- **Arial**: ~148,541 document images
- **Calibri**: ~148,541 document images
- **Scheherazade New**: ~148,541 document images
📋 Sample Images
<div align="center">
<table>
<tr>
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/gwF9jkkkpzRSzrP9GCE_l.png" width="300" alt="Sample 1 - Amiri Font"/></td>
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/dsqWoCh5x31eGq-u-PqPS.png" width="300" alt="Sample 2 - Arial Font"/></td>
</tr>
<tr>
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/2XK9Ey6k6HSDXKXCxmVRG.png" width="300" alt="Sample 3 - Calibri Font"/></td>
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/64e8eb21233101ed99b204c8/CxKITKvc3EnDIuqnNy_bV.png" width="300" alt="Sample 4 - Scheherazade Font"/></td>
</tr>
</table>
</div>
Each split contains data specific to a single font with the following attributes:
- `image_name`: Unique identifier for each image
- `chunk`: The text content associated with the image
- `font_name`: The font used in text rendering
- `image_base64`: Base64-encoded image representation
## Content Distribution
| Category | Number of Articles |
|----------|-------------------|
| Culture | 13,253 |
| Fatawa & Counsels | 8,096 |
| Literature & Language | 11,581 |
| Bibliography | 26,393 |
| Publications & Competitions | 1,123 |
| Shariah | 46,665 |
| Social | 8,827 |
| Translations | 443 |
| Muslim's News | 16,725 |
| **Total Articles** | **133,105** |
## Font Specifications
| Font | Words Per Page | Font Size |
|------|----------------|-----------|
| Sakkal Majalla | 50–300 | 14 pt |
| Arial | 50–500 | 12 pt |
| Calibri | 50–500 | 12 pt |
| Amiri | 50–300 | 12 pt |
| Scheherazade | 50–250 | 12 pt |
## Page Layout
| Specification | Measurement |
|---------------|-------------|
| Left Margin | 0.9 inches |
| Right Margin | 0.9 inches |
| Top Margin | 1.0 inch |
| Bottom Margin | 1.0 inch |
| Gutter Margin | 0.2 inches |
| Page Width | 8.27 inches (A4) |
| Page Height | 11.69 inches (A4) |
## Usage Example
```python
from datasets import load_dataset
import base64
from io import BytesIO
from PIL import Image
import matplotlib.pyplot as plt
# Load dataset with streaming enabled
ds = load_dataset("riotu-lab/SARD", streaming=True)
print(ds)
# Iterate over a specific font dataset (e.g., Amiri)
for sample in ds["Amiri"]:
image_name = sample["image_name"]
chunk = sample["chunk"] # Arabic text transcription
font_name = sample["font_name"]
# Decode Base64 image
image_data = base64.b64decode(sample["image_base64"])
image = Image.open(BytesIO(image_data))
# Display the image
plt.figure(figsize=(10, 10))
plt.imshow(image)
plt.axis('off')
plt.title(f"Font: {font_name}")
plt.show()
# Print the details
print(f"Image Name: {image_name}")
print(f"Font Name: {font_name}")
print(f"Text Chunk: {chunk}")
# Break after one sample for testing
break
```
## Applications
SAND is designed to support various Arabic text recognition tasks:
- Training and evaluating OCR models for Arabic text
- Developing vision-language models for document understanding
- Fine-tuning existing OCR models for better Arabic script recognition
- Benchmarking OCR performance across different fonts and layouts
- Research in Arabic natural language processing and computer vision
## Acknowledgments
The authors thank Prince Sultan University for their support in developing this dataset. |