#!/usr/bin/env python3 import numpy as np import sys import glob import os import json import imageio from tqdm import trange arr = ['04-09_19_30_IMG_1192']*3 intrs = [np.loadtxt(os.path.join('./train/intrinsics', f+'.txt')) for f in arr] poses = [np.loadtxt(os.path.join('./train/pose', f+'.txt')) for f in arr] base = './static_path1' os.makedirs(os.path.join(base, 'intrinsics'), exist_ok=True) os.makedirs(os.path.join(base, 'pose'), exist_ok=True) H, W = imageio.imread(os.path.join('./train/rgb', arr[0]+'.JPG')).shape[:2] N = 100 obj = dict() for i in range(N): idxa = i*(len(intrs)-1)//N idxb = idxa+1 blendratio = (i-idxa*N//(len(intrs)-1))/(N//(len(intrs)-1)) # intr = intrs[idxa]*(1-blendratio)+intrs[idxb]*blendratio intr = intrs[0] pose = poses[idxa]*(1-blendratio)+poses[idxb]*blendratio print(i, idxa, idxb, blendratio) fn = f'{i:06d}' np.savetxt(os.path.join(base, 'intrinsics', fn+'.txt'), intr.reshape(1, -1)) np.savetxt(os.path.join(base, 'pose', fn+'.txt'), pose.reshape(1, -1)) obj[fn+'.png'] = {'K': list(intr.reshape(-1)), 'W2C': list(pose.reshape(-1)), 'img_size': [W, H]} with open(os.path.join(base, 'cam_dict_norm.json'), 'w') as f: json.dump(obj, f)