File size: 3,592 Bytes
3b6833d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# rupindersingh1313/30_8_2025_dataset

## Dataset Description

This dataset contains Punjabi OCR data with page images and their corresponding text annotations, ready for machine learning applications.

### Dataset Summary

- **Language**: Punjabi (pa-IN)
- **Script**: Gurmukhi
- **Total Pages**: 769
- **Source**: Generated using Punjabi OCR annotation pipeline
- **Format**: Image-annotation pairs with original JSON annotations

### Dataset Splits

- **Train**: 615 samples
- **Validation**: 76 samples
- **Test**: 78 samples

The dataset is split into train/validation/test sets with an 80/10/10 ratio by default:
- Training set for model training
- Validation set for hyperparameter tuning and model selection
- Test set for final evaluation

### Dataset Structure

Each row contains:
- `image`: The page image (PNG format, high resolution)
- `annotation`: Complete OCR annotation in JSON format (as string)

The annotation JSON contains the original structure with:
- Document metadata (language, script, image dimensions)
- Text hierarchy (regions, lines, words)
- Bounding box coordinates for all text elements
- Complete text transcription

### Usage

```python
from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("rupindersingh1313/30_8_2025_dataset")

# Access different splits
train_data = dataset["train"]
val_data = dataset["validation"] 
test_data = dataset["test"]

# Iterate through training data
for sample in train_data:
    image = sample["image"]
    annotation = json.loads(sample["annotation"])  # Parse JSON annotation
    print(f"Image shape: {image.size}")
    print(f"Annotation keys: {list(annotation.keys())}")
```

### Annotation Format

The annotation field contains JSON with this structure:
```json
{
  "document": {
    "id": "doc_001",
    "language": "pa-IN",
    "script": "Gurmukhi",
    "image": {"width": 2481, "height": 3507, "dpi": 300}
  },
  "hierarchy": {
    "regions": [
      {
        "region_id": 1,
        "type": "text_block",
        "polygon": [x1, y1, x2, y2, ...],
        "lines": [
          {
            "line_id": 1,
            "polygon": [x1, y1, x2, y2, ...],
            "words": [
              {
                "word_id": 1,
                "text": "ਪੰਜਾਬੀ",
                "polygon": [x1, y1, x2, y2, ...]
              }
            ]
          }
        ]
      }
    ]
  }
}
```

### Use Cases

This dataset is suitable for:
- **OCR Model Training**: Train custom OCR models for Punjabi text
- **Text Detection**: Develop text region detection algorithms
- **Document Layout Analysis**: Analyze document structure and layout
- **Multilingual NLP**: Include Punjabi in multilingual language models
- **Research**: Academic research in OCR and document processing

### Data Quality

- High-resolution images (300 DPI)
- Accurate text transcriptions
- Precise bounding box annotations
- Consistent formatting and structure
- Quality-controlled annotation process

### License

Please ensure proper attribution when using this dataset. Contact the dataset creators for commercial use permissions.

### Citation

If you use this dataset, please cite:

```bibtex
@dataset{punjabi_ocr_dataset,
  title={Punjabi OCR Dataset - rupindersingh1313/30_8_2025_dataset},
  author={Generated using Punjabi OCR Pipeline},
  year={2025},
  url={https://huggingface.co/datasets/rupindersingh1313/30_8_2025_dataset},
  note={High-quality Punjabi OCR dataset with images and annotations}
}
```

### Contact

For questions, issues, or contributions, please contact the dataset maintainers.