File size: 130,976 Bytes
ba0c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e074bf
ba0c122
 
 
 
 
 
 
 
0bd9651
 
 
ba0c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e074bf
ba0c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a952f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
---
pretty_name: Tabular Imbalanced Regression Datasets
tags:
  - tabular
  - imbalanced-regression
  - regression
  - benchmark
  - machine-learning
viewer: false
license: cc-by-4.0
datasets:
  - UCI
  - Kaggle
  - Github
language:
  - en
---




# Tabular Imbalanced Regression Datasets

## Repository Summary

This repository provides a collection of **81 tabular datasets** curated for research on **tabular imbalanced regression** problems. 
They were obtained from the various studies carried out on the subject (source and papers listed below).  
Its objective is to centralize datasets commonly used in the literature, serving as a solid reference point for future work.

Additional datasets can be contributed or requested — feel free to open an issue or pull request.


## Citation
If you use dataset from this repository in your research, please cite our paper:
Samuel Stocksieker, Denys Pommeret. A Comprehensive Survey on Imbalanced Regression: Definitions, Solutions, and Future Directions. 2025. ⟨hal-05213741⟩
https://hal.science/hal-05213741



## Dataset Structure
This collection is intended for training, evaluating, and benchmarking models in **imbalanced regression** tasks.  
All datasets have been preprocessed to consistently place the **target variable as the first column**.
A detailed summary of the 81 datasets is available in the table below. A second table lists the datasets used by each referenced paper in the survey.
This metadata enables standardized comparisons and better understanding of dataset difficulty and imbalance characteristics.

## Python Utilities
This repository includes Python code to compute imbalance coefficient based on the target distribution.  
The script `imbalance_coefficient.py` provides the function `imb_coef()` for both continuous and discrete targets.

You can explore our Python implementation and a usage notebook in the `imbalance_coefficient/` subfolder:

- [imbalance_metric.py](./Imbalance_Coefficient/imbalance_coefficient.py): Python function to compute the imbalance ratio.
- [Demo Notebook](./Imbalance_Coefficient/imb_coef_demo.ipynb): notebook demonstration.



## Dataset Overview

For each dataset, the following metadata is provided:
- **n_obs**: Number of observations  
- **p_var**: Total number of features  
- **p_num**: Number of numerical features  
- **p_cat**: Number of categorical features  
- **Type**: Type of target variable (continuous, integer, etc.)  
- **Skew**: Skewness of the target distribution  
- **Imb. Coef.**: Imbalance coefficient as defined in Section \ref{imbCoef}  
- **mIR**: Mean Imbalanced Ratio, as introduced by [Wibbeke et al., 2025](https://arxiv.org/abs/2401.12345)  
- **Miss.**: Proportion of missing values  
- **Used**: Number of times the dataset has been used in published papers

|dataset               |n_obs |p_variables|p_numeric|p_categorical|target_type|target_skewness|Imb_coef|mIR     |missing_rate|Used|
|----------------------|------|-----------|---------|-------------|-----------|---------------|---------|--------|------------|----|
|abalone               |4177  |11         |11       |0            |int64      |1.11           |54.23    |345.73  |0.0         |32  |
|boston                |506   |14         |14       |0            |float64    |1.1            |36.0     |218.31  |0.0         |30  |
|accel                 |1732  |23         |23       |0            |float64    |0.77           |51.58    |292.14  |0.0         |23  |
|availPwr              |1802  |16         |9        |7            |int64      |1.9            |55.97    |348.26  |0.0         |23  |
|cpusm                 |8192  |13         |13       |0            |int64      |-3.42          |63.69    |358.7   |0.0         |23  |
|a7                    |198   |12         |9        |3            |float64    |3.72           |70.01    |456.38  |0.0         |22  |
|bank8fm               |4499  |9          |9        |0            |float64    |1.08           |44.18    |252.74  |0.0         |22  |
|a1                    |198   |12         |9        |3            |float64    |1.46           |46.56    |242.44  |0.0         |20  |
|airfoild              |1503  |6          |6        |0            |float64    |-0.42          |31.86    |189.28  |0.0         |18  |
|fuelCons              |1764  |38         |26       |12           |float64    |1.14           |52.08    |303.6   |0.0         |18  |
|maxTorque             |1802  |33         |20       |13           |int64      |1.63           |55.67    |331.58  |0.0         |18  |
|a2                    |198   |12         |9        |3            |float64    |2.41           |61.29    |365.26  |0.0         |16  |
|a3                    |198   |12         |9        |3            |float64    |2.47           |62.7     |391.33  |0.0         |16  |
|a4                    |198   |12         |9        |3            |float64    |5.96           |77.89    |624.82  |0.0         |15  |
|a6                    |198   |12         |9        |3            |float64    |3.14           |67.32    |453.93  |0.0         |15  |
|heat                  |7400  |12         |12       |0            |float64    |1.63           |56.2     |365.29  |0.0         |14  |
|a5                    |198   |12         |9        |3            |float64    |2.33           |59.89    |335.47  |0.0         |13  |
|machineCpu            |209   |7          |7        |0            |int64      |3.86           |68.46    |487.1   |0.0         |13  |
|mortgage              |1049  |16         |16       |0            |float64    |1.03           |33.32    |198.8   |0.0         |13  |
|servo                 |167   |5          |3        |2            |float64    |1.77           |54.11    |305.16  |0.0         |12  |
|treasury              |1049  |16         |16       |0            |float64    |1.33           |43.97    |242.9   |0.0         |11  |
|deltaAilerons         |7129  |6          |6        |0            |float64    |-0.15          |43.91    |258.89  |0.0         |10  |
|forestFires           |517   |13         |13       |0            |float64    |12.81          |90.15    |1824.05 |0.0         |10  |
|fremotor1prem0304a_sev|51949 |31         |17       |14           |int64      |170.33         |98.64    |57674.8 |4.34        |10  |
|dataset_Facebook      |500   |19         |18       |1            |int64      |9.68           |84.84    |1234.7  |0.06        |9   |
|debutanizer           |2394  |8          |8        |0            |float64    |1.71           |48.21    |291.81  |0.0         |9   |
|strikes               |625   |7          |7        |0            |int64      |6.4            |78.86    |837.8   |0.0         |9   |
|student-mat           |395   |33         |16       |17           |int64      |0.24           |24.1     |157.34  |0.0         |9   |
|ailerons              |13750 |41         |41       |0            |float64    |-1.35          |57.42    |363.56  |0.0         |8   |
|wine_quality          |6497  |12         |12       |0            |float64    |0.19           |60.26    |515.63  |0.0         |8   |
|autoPrice             |205   |26         |16       |10           |int64      |1.79           |48.82    |266.97  |0.0         |7   |
|elevators             |16599 |19         |19       |0            |int64      |0.15           |44.14    |248.2   |0.0         |7   |
|baseball              |337   |17         |17       |0            |int64      |1.16           |42.7     |244.45  |0.0         |6   |
|californiaHousing     |20640 |9          |9        |0            |int64      |0.98           |31.16    |        |0.0         |6   |
|triazines             |186   |61         |61       |0            |float64    |-1.34          |37.29    |217.24  |0.0         |6   |
|analcatdata_apnea3    |450   |12         |12       |0            |float64    |5.0            |82.68    |859.26  |0.0         |5   |
|cpuAct                |8192  |22         |22       |0            |int64      |-3.42          |63.69    |358.7   |0.0         |5   |
|diabetes              |43    |3          |3        |0            |float64    |-0.23          |29.83    |196.25  |0.0         |5   |
|house8H               |22784 |9          |8        |1            |int64      |3.75           |69.98    |        |0.0         |5   |
|kinematics8fh         |8192  |9          |9        |0            |float64    |-0.4           |45.58    |256.79  |0.0         |5   |
|laser                 |993   |5          |5        |0            |int64      |1.19           |42.06    |245.05  |0.0         |5   |
|musicorigin           |1059  |118        |118      |0            |float64    |3.21           |66.67    |486.74  |0.0         |5   |
|pollen                |3848  |5          |5        |0            |float64    |-0.13          |42.93    |245.29  |0.0         |5   |
|space_ga              |3107  |7          |7        |0            |float64    |-1.02          |71.07    |496.47  |0.0         |5   |
|wages                 |534   |11         |4        |7            |float64    |1.69           |56.78    |329.52  |0.0         |5   |
|ele-1                 |495   |3          |3        |0            |float64    |1.51           |49.24    |275.72  |0.0         |4   |
|ele-2                 |1056  |5          |5        |0            |float64    |1.44           |44.31    |261.91  |0.0         |4   |
|quake                 |2178  |4          |4        |0            |float64    |1.3            |50.91    |286.97  |0.0         |4   |
|sulfur                |10081 |6          |6        |0            |float64    |2.5            |73.58    |738.32  |0.0         |4   |
|NO2Emissions          |500   |8          |8        |0            |float64    |-0.55          |44.96    |266.89  |0.0         |3   |
|wankara               |1609  |10         |10       |0            |float64    |0.02           |17.64    |135.47  |0.0         |3   |
|energy                |19735 |28         |28       |0            |int64      |3.39           |74.6     |990.58  |0.0         |2   |
|superconductivity     |21263 |82         |82       |0            |float64    |0.86           |46.97    |301.53  |0.0         |2   |
|AmesHousing           |2930  |82         |39       |43           |int64      |1.74           |58.78    |        |6.55        |1   |
|AutoBi                |1340  |8          |8        |0            |float64    |25.69          |94.24    |4290.81 |2.85        |1   |
|avocado               |18249 |13         |10       |3            |float64    |0.58           |45.34    |250.35  |0.0         |1   |
|cocomo_numeric        |60    |57         |57       |0            |float64    |2.61           |60.26    |321.34  |0.0         |1   |
|College               |777   |19         |17       |2            |int64      |-0.11          |37.58    |213.18  |0.0         |1   |
|communitiesCrime      |1994  |127        |127      |0            |float64    |1.52           |42.98    |246.4   |0.0         |1   |
|concreteStrength      |1030  |9          |9        |0            |float64    |0.42           |25.74    |166.68  |0.0         |1   |
|delta_ailerons        |7129  |6          |6        |0            |float64    |0.29           |68.04    |580.68  |0.0         |1   |
|delta_elv             |9517  |7          |7        |0            |float64    |0.16           |38.24    |215.0   |0.0         |1   |
|electrical            |10000 |14         |13       |1            |float64    |-0.0           |3.66     |105.7   |0.0         |1   |
|hour                  |17379 |17         |16       |1            |int64      |1.28           |47.0     |273.61  |0.0         |1   |
|house                 |22784 |17         |17       |0            |float64    |3.75           |69.98    |        |0.0         |1   |
|housing               |1460  |81         |38       |43           |int64      |1.88           |58.35    |        |6.62        |1   |
|Housing_2             |545   |13         |6        |7            |int64      |1.21           |43.52    |        |0.0         |1   |
|insurance             |1338  |7          |4        |3            |float64    |1.51           |49.56    |276.45  |0.0         |1   |
|kdd_coil_1            |316   |19         |19       |0            |float64    |1.45           |45.75    |243.23  |0.0         |1   |
|lungcancer_shedden    |442   |25         |25       |0            |float64    |0.94           |40.87    |216.06  |0.0         |1   |
|meta                  |528   |66         |66       |0            |float64    |14.65          |92.53    |1880.28 |0.0         |1   |
|pdgfr                 |79    |321        |321      |0            |float64    |-0.64          |25.99    |171.82  |0.0         |1   |
|pendigits             |10992 |17         |17       |0            |int64      |0.03           |10.25    |110.63  |0.0         |1   |
|PricingGame           |100021|20         |14       |6            |float64    |7.4            |89.52    |8627.91 |0.0         |1   |
|puma32h               |8192  |33         |33       |0            |float64    |-0.02          |4.6      |107.38  |0.0         |1   |
|qsar_aquatic_toxicity |546   |9          |9        |0            |float64    |0.32           |38.27    |223.42  |0.0         |1   |
|red_wine              |1599  |12         |12       |0            |int64      |0.22           |52.19    |392.51  |0.0         |1   |
|sensory               |576   |12         |12       |0            |float64    |-0.04          |37.04    |219.66  |0.0         |1   |
|SynchronousMachine    |557   |5          |5        |0            |float64    |0.0            |8.22     |113.58  |0.0         |1   |
|telematics_syn-032021 |100000|51         |43       |8            |float64    |22.7           |96.34    |28783.35|0.0         |1   |
|yacht_hydrodynamics   |308   |7          |7        |0            |float64    |1.75           |52.68    |289.73  |0.0         |1   |


The table below summarizes the papers analyzed in the survey. For each work, it includes the name of the proposed algorithm (if any), the programming language used (R or Python), the repository link (when available), and the list of datasets used.


|Paper                                                                                                                                                                     |Algorithm                                                                                                                                |Repo              |R vs python                         |Repo link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |Dataset6                         |Dataset7               |Dataset8                         |Dataset9        |Dataset10      |Dataset11                   |Dataset12          |Dataset13          |Dataset14               |Dataset15             |Dataset16       |Dataset17            |Dataset18          |Dataset19            |Dataset20       |Dataset21             |Dataset22         |Dataset23              |Dataset24          |Dataset25            |Dataset26          |Dataset27      |Dataset28          |Dataset29         |Dataset30          |Dataset31      |Dataset32           |Dataset33      |Dataset34       |Dataset35       |Dataset36   |Dataset37   |Dataset38      |Dataset39 |Dataset40 |Dataset41          |Dataset42 |Dataset43        |Dataset44 |Dataset45 |Dataset46|Dataset47 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|-------------------------------|--------------|-------------|--------------------------|-----------------|-----------------|----------------------|--------------------|--------------|-------------------|-----------------|-------------------|--------------|--------------------|----------------|---------------------|-----------------|-------------------|-----------------|-------------|-----------------|----------------|-----------------|-------------|------------------|-------------|--------------|--------------|----------|----------|-------------|--------|--------|-----------------|--------|---------------|--------|--------|-------|--------|
|Predicting Outliers                                                                                                                                                       |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |servo                          |triazines            |a1                             |a2            |a3           |a4                        |a5               |a6               |a7                    |machinecpu          |china         |Boston             |onekm            |cw.drag            |co2.emission  |accel               |availpwr        |bank8FM              |deltaailerons    |ibm                |cpuSm            |deltaelv     |calhousing       |add             |fried            |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Rule-Based Prediction of Rare Extreme Values                                                                                                                              |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |servo                          |triazines            |a1                             |a2            |a3           |a4                        |a5               |a6               |a7                    |machinecpu          |china         |sard0              |sard2            |sard3              |sard4         |sard5               |sard0.new       |sard1.new            |Boston           |onekm              |cw.drag          |co2.emission |accel            |availpwr        |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Predicting Rare Extreme Values                                                                                                                                            |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |a1                             |a2                   |a3                             |a4            |a5           |a6                        |a7               |Boston           |machinecpu            |bank8FM             |deltaailerons |ibm                |Abalone          |cpuSm              |servo         |cw.drag             |co2.emission    |availpwr             |china            |add                |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Utility-Based Regression                                                                                                                                                  |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |International_Business_Machines|                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Utility-based Performance Measures for Regression                                                                                                                         |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Precision and Recall for Regression                                                                                                                                       |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |International_Business_Machines|Coca.Cola            |Boeing                         |General_Motors|             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Utility-based Regression                                                                                                                                                  |                                                                                                                                         |❌               |                                    |✅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |NO2                            |miscellaneous_domains|Harmful_a_Blooms               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|An extended tuning method for cost-sensitive regression and forecasting                                                                                                   |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|SMOTE for Regression                                                                                                                                                       |SmoteR                                                                                                                                   |✅|R                                   |https://www.dcc.fc.up.pt/~ltorgo/EPIA2013/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |a1                             |a2                   |a3                             |a4            |a5           |a6                        |a7               |Abalone          |Accel                 |dAiler              |availPwr      |bank8FM            |cpuSm            |deltaelv           |fuelCons      |boston              |maxtorqueq      |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Imbalanced learning: foundations, algorithms, and applications                                                                                                            |                                                                                                                                         |                  |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Resampling strategies for regression                                                                                                                                      |over- ; under- ; SmoteR                                                                                                                  |✅|Resampling strategies for regression|http://www.dcc.fc.up.pt/~ltorgo/ExpertSystems + https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html + http://www.erudit.de/erudit/                                                                                                                                                                                                                                                                                                                                                                                   |a1                             |a2                   |a3                             |a4            |a5           |a6                        |a7               |Abalone          |Accel                 |dAiler              |availPwr      |bank8FM            |cpuSm            |deltaelv           |fuelCons      |boston              |maxtorqueq      |Heat                 |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Learning from imbalanced data: open challenges and future directions                                                                                                      |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|UBL: an R Package for Utility-Based Learning                                                                                                                              |BaggingRegress ; EvalRegressMetrics ; GaussNoiseRegress ; RandOverRegress ; RandUnderRegress ; SMOGNRegress ; SmoteRegress ; WERCSRegress|✅|R                                   |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|A Survey of Predictive Modeling on Imbalanced Domains                                                                                                                     |                                                                                                                                         |❌               |                                    |https://archive.ics.uci.edu/ml/datasets/Hepatitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |Hepatitis                      |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Learning from imbalanced data for predicting the number of software defects                                                                                               |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |Ant                            |Camel                |Jedit                          |Synapse       |Xalan        |Log4j                     |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Learning Through Utility Optimization in Regression Tasks                                                                                                                 |MU ; NMU                                                                                                                                 |✅|R                                   |https://lib.stat.cmu.edu/datasets/ + https://github.com/paobranco/UtilityOptimizationRegression                                                                                                                                                                                                                                                                                                                                                                                                                            |servo                          |a6                   |Abalone                        |machineCpu    |a3           |a4                        |a1               |a7               |boston                |a2                  |a5            |fuelCons           |availPwr         |bank8FM            |Accel         |airfoild            |LNO2Emissions   |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Evaluation of Ensemble Methods in Imbalanced Regression Tasks                                                                                                             |NA                                                                                                                                       |✅|R                                   |https://github.com/nunompmoniz/Ensembles_LIDTA2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |a3                             |a6                   |a4                             |a7            |Abalone      |a1                        |boston           |a5               |availPwr              |a2                  |cpuSm         |heat               |fuelCons         |maxtorqueq         |deltaelv      |bank8FM             |dAiler          |Accel                |ConcrStr         |airfoild           |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|SMOGN: a Pre-processing Approach for Imbalanced Regression                                                                                                                |SMOGN                                                                                                                                    |✅|R                                   |https://github.com/paobranco/SMOGN-LIDTA17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |servo                          |a6                   |Abalone                        |machineCpu    |a3           |a4                        |a1               |a7               |boston                |a2                  |a5            |fuelCons           |availPwr         |cpuSm              |maxtorqueq    |bank8FM             |dAiler          |ConcrStr             |Accel            |airfoild           |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Exploring Resampling with Neighborhood Bias on Imbalanced Regression Problems                                                                                             |Under-sampling with neighborhood bias ; Over-sampling with neighborhood bias                                                             |✅|R                                   |https://github.com/paobranco/NeighborhoodBiasResamplingRegression                                                                                                                                                                                                                                                                                                                                                                                                                                                          |servo                          |a6                   |Abalone                        |machinecpu    |a3           |a4                        |a1               |a7               |boston                |a2                  |fuelCons      |availPwr           |cpuSm            |maxtorqueq         |bank8FM       |ConcrStr            |Accel           |airfoild             |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|SMOTEBoost for Regression: Improving the Prediction of Extreme Values                                                                                                     |SMOTEBoost                                                                                                                               |✅|R                                   |https://github.com/nunompmoniz/DSAA2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |airport                        |diabetes             |a1                             |a7            |autoPrice    |baseball                  |elecLen1         |boston           |forestFires           |wages               |strikes       |laser              |concrstr         |mortgage           |treasury      |elecLen2            |musicorigin     |availpwr             |maxtorqueq       |communitiesCrime   |debutenizer      |space        |pollen           |abalone         |wine             |deltaailerons|heat              |bank32       |cpuAct        |kinematics32fh|pumaRobot |          |             |        |        |                 |        |               |        |        |       |        |
|Pre-processing approaches for imbalanced distributions in regression                                                                                                      |WERCS                                                                                                                                    |✅|R                                   |https://github.com/paobranco/Pre-processingApproachesImbalanceRegression + https://paobranco.github.io/DataSets-IR/                                                                                                                                                                                                                                                                                                                                                                                                        |a6                             |Abalone              |a3                             |a4            |a1           |a7                        |boston           |a2               |fuelCons              |heat                |availPwr      |cpuSm              |maxtorqueq       |bank8FM            |Accel         |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|REBAGG: REsampled BAGGing for Imbalanced Regression                                                                                                                       |REBAGG                                                                                                                                   |✅|R                                   |https://github.com/paobranco/REBAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |servo                          |a6                   |Abalone                        |machinecpu    |a3           |a4                        |a1               |a7               |boston                |a2                  |a5            |fuelCons           |availPwr         |cpuSm              |maxtorqueq    |dAiler              |bank8FM         |ConcrStr             |Accel            |airfoild           |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary                                                                         |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Utility-based Predictive Analytics                                                                                                                                        |                                                                                                                                         |❌               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |servo                          |a6                   |Abalone                        |a3            |a4           |a1                        |a7               |boston           |a2                    |a5                  |fuelCons      |bank8FM            |Accel            |airfoild           |machinecpu    |availPwr            |cpuSm           |maxtorqueq           |dAiler           |ConcrStr           |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Learning from Imbalanced Data Sets                                                                                                                                        |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|A Study on the Impact of Data Characteristics in Imbalanced Regression Tasks                                                                                              |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Biased Resampling Strategies for Imbalanced Spatio-Temporal Forecasting                                                                                                   |                                                                                                                                         |Specific          |                                    |https://github.com/mrfoliveira/STResampling-DSAA2019/tree/master/inst/extdata                                                                                                                                                                                                                                                                                                                                                                                                                                              |MESA                           |Air_Pollution        |NCDC                           |Air_Climate   |TCE          |RURAL                     |airBase          |Beijing          |UrbanAir              |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Imbalanced regression and extreme value prediction                                                                                                                        |SERA                                                                                                                                     |✅|R                                   |https://github.com/nunompmoniz/IRon/tree/master/data + https://lib.stat.cmu.edu/datasets/                                                                                                                                                                                                                                                                                                                                                                                                                                  |diabetes                       |triazines            |a7                             |elecLen1      |boston       |forestFires               |strikes          |mortgage         |treasury              |musicorigin         |airfoild      |accel              |fuelcons         |availpwr           |maxtorqueq    |debutenizer         |space.ga        |pollen               |abalone          |wine               |deltaailerons    |heat         |cpuAct           |kinematics8fh   |kinematics32fh   |pumaRobot    |deltaElevation    |sulfur1      |sulfur2       |ailerons      |elevators |calHousing|house8h      |house16h|        |                 |        |               |        |        |       |        |
|Improving enzyme optimum temperature prediction with resampling strategies and ensemble learning                                                                          |RO ; RU ; SMOTER ; GN, ; WERCS ; REBAGG ; metrics: F1S                                                                                   |✅|python                              |https://github.com/jafetgado/resreg/blob/master/resreg/resreg.py + https://github.com/jafetgado/tomerdesign/                                                                                                                                                                                                                                                                                                                                                                                                               |Brenda                         |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Density‑based weighting for imbalanced regression                                                                                                                         |DenseWeight                                                                                                                              |✅|Python                              |https://github.com/SteiMi/denseweight + https://github.com/SteiMi/density-based-weighting-for-imbalanced-regression/tree/main/exp3/data + https://github.com/paobranco/SMOGN-LIDTA17                                                                                                                                                                                                                                                                                                                                       |a1                             |a2                   |a3                             |a4            |a5           |a6                        |a7               |Abalone          |accel                 |Airfoild            |AvailPwr      |Bank8FM            |Boston           |ConcrStr           |cpuSm         |dAiler              |FuelCons        |MachineCpu           |maxtorqueq       |Servo              |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|A novel cost-sensitive algorithm and new evaluation strategies for regression in imbalanced domains                                                                       |                                                                                                                                         |✅|Matlab                              |https://github.com/lsadouk/imbalanced_regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |Abalone                        |Accel                |Heat                           |cpuSm         |bank8FM      |Parkinson                 |dAiler           |H101_North_D7    |I5_South_D7           |I5_North_D7         |I210_West_D7  |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Sampling To Improve Predictions For Underrepresented Observations In Imbalanced Data                                                                                      |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |penicillin_production          |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Chebyshev approaches for imbalanced data streams regression models                                                                                                        |                                                                                                                                         |Specific          |                                    |https://github.com/ehaminian/imbalancedDataStream/tree/master/stream1                                                                                                                                                                                                                                                                                                                                                                                                                                                      |puma32hh                       |cpusm                |elevators                      |bike          |energy       |calhousing                |gasemission      |mv               |fried                 |polution            |car_price     |query              |GPU              |3d                 |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|DistSMOGN: Distributed SMOGN for Imbalanced Regression Problems                                                                                                           |DistSMOGN                                                                                                                                |✅|python                              |https://github.com/ndao1104/distributed-resampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |Boston                         |Abalone              |Bank8FM                        |heat          |cpuSM        |energy                    |superconductivity|                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Geometric SMOTE for regression                                                                                                                                            |                                                                                                                                         |❌               |                                    |https://paobranco.github.io/DataSets-IR/ + https://sci2s.ugr.es/keel/datasets.php                                                                                                                                                                                                                                                                                                                                                                                                                                          |anacalt                        |bank8FM              |baseball                       |boston        |compactiv    |concrstr                  |cpuSm            |ele.1            |ele.2                 |forestFires         |friedman      |laser              |machineCPU       |mortgage           |quake         |stock               |treasury        |wankara              |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Model Optimization in Imbalanced Regression                                                                                                                               |SERA                                                                                                                                     |✅|R                                   |https://github.com/anibalsilva1/IRModelOptimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |diabetes                       |triazines            |a7                             |autoPrice     |elecLen1     |boston                    |forestFires      |wages            |strikes               |mortgage            |treasury      |musicorigin        |airfoild         |accel              |fuelcons      |availpwr            |maxtorqueq      |debutenizer          |space.ga         |pollen             |abalone          |wine         |deltaailerons    |heat            |cpuAct           |kinematics8fh|kinematics32fh    |pumaRobot    |deltaElevation|sulfur        |ailerons  |elevators |calHousing   |house8h |house16h|onlineNewsPopRegr|        |               |        |        |       |        |
|A boosting resampling method for regression based on a conditional variational autoencoder                                                                                |                                                                                                                                         |❌               |                                    |https://archive.ics.uci.edu/ + https://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR/                                                                                                                                                                                                                                                                                                                                                                                                                                           |F1                             |F2                   |Abalone                        |Boston        |dAiler       |Indoor_air_quality        |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Robustness Evaluation of Regression Tasks with Skewed Domain Preferences                                                                                                  |                                                                                                                                         |❌               |                                    |❌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |Mail                           |activity             |a1                             |a7            |price        |salary                    |length           |norway           |housevalue            |area                |wages         |strikes            |output           |strength           |yc30          |cdrate              |v100            |soundpressure        |accel            |fuel               |power            |torque       |violentcrimes    |richter         |y                |lny          |density           |germany      |beijing       |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|A Survey of Learning with Imbalanced Data, Representation Learning and SEP Forecasting                                                                                    |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|ASER: Adapted squared error relevance for rare cases prediction in imbalanced regression                                                                                  |                                                                                                                                         |❌               |                                    |https://github.com/yingk1213/ASER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |diabetes                       |a7                   |autoPrice                      |elecLen1      |boston       |forestFires               |wages            |strikes          |mortgage              |treasury            |musicorigin   |airfoild           |accel            |fuelcons           |availpwr      |maxtorqueq          |debutenizer     |space.ga             |pollen           |abalone            |wine             |deltaailerons|heat             |cpuAct          |kinematics8fh    |pumaRobot    |deltaElevation    |sulfur       |ailerons      |elevators     |calHousing|house8h   |             |        |        |                 |        |               |        |        |       |        |
|Imbalanced Mixed Linear Regression                                                                                                                                        |                                                                                                                                         |Specific          |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Semi-Supervised Graph Imbalanced Regression                                                                                                                               |                                                                                                                                         |Specific          |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|A broad review on class imbalance learning techniques                                                                                                                     |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |Wisconsin                      |Pima                 |Yeast_1                        |Vehicle_2     |Vehicle_1    |Segment                   |Yeast_3          |Page_blocks      |Yeast_2vs4            |Ecoli_0234vs5       |Yeast_0359vs78|Yeast_0256vs3789   |Ecoli_046vs5     |Ecoli_01vs235      |Yeast_05679vs4|Vowel               |Ecoli_067vs5    |Led7digit_02456789vs1|Ecoli_01vs5      |Ecoli_0147vs56     |Ecoli_0146vs5    |Glass_4      |Ecoli_4          |Yeast_1458Vs7   |Glass_5          |Yeast_2Vs8   |Yeast_4           |Yeast_1289Vs7|Yeast_5       |Ecoli_0137vs26|Yeast_6   |Abalone   |             |        |        |                 |        |               |        |        |       |        |
|A Review of Machine Learning Techniques in Imbalanced Data and Future Trends                                                                                              |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Enhancing soft computing techniques to actively address imbalanced regression problems                                                                                    |                                                                                                                                         |❌               |                                    |The selected datasets come from ‘‘Irvine Machine Learning Repository’’ (UCI) (Dua & Graff, 2017), ‘‘Knowledge Extraction based on Evolutionary Learning’’ (KEEL) (Triguero et al., 2017), ‘‘Dataset Collections of Weka’’ (WEKA) (Witten et al., 2016), ‘‘Delve Datasets’’ (DELVE) (Akujuobi & Zhang, 2017), ‘‘Luis Torgo Repository’’ (LTR) (Torgo, 2023) and from ‘‘Journal of Statistics Education Data Archive’’ (JSE) (JSE, 2023). These repositories are high quality, certified and supported by many other studies.|Abalone                        |Airfoild             |Anacalt                        |Baseball      |boston       |concrstr                  |machinecpu       |Electrical_Length|Electrical_Maintenance|Facebook_Measures   |forestfires   |laser.generated    |Mortgage         |AutoPrice          |Quake         |Servo               |Strikes         |Treasury             |Triazines        |Yacht_Hydrodynamics|Add              |Ailerons     |Bank32           |Bank8           |Computer_activity|California   |Cpusm             |deltaailerons|Deltaelv      |house16h      |house8h   |puma32hh  |             |        |        |                 |        |               |        |        |       |        |
|Imbalanced regression using regressor‑classifier ensembles                                                                                                                |Federated Ensemble Learning using Classification                                                                                         |✅|python                              |https://github.com/oghenejokpeme/EFERUC + https://data.mendeley.com/datasets/mpvwnhv4vb/2                                                                                                                                                                                                                                                                                                                                                                                                                                  |Branco                         |Gene_expression      |OpenML                         |QSAR          |Yeast        |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Multi-output Regression for Imbalanced Data Stream                                                                                                                        |                                                                                                                                         |Specific          |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|tian2023unbalanced                                                                                                                                                        |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |Abalone                        |Airfoild             |ER_activity                    |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Adapting a deep convolutional RNN model with imbalanced regression loss for improved spatio-temporal forecasting of extreme wind speed events in the short to medium range|                                                                                                                                         |specific          |python                              |https://github.com/dscheepens/Deep-RNN-for-extreme-wind-speed-prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Spatial-SMOTE for handling imbalance in spatial regression tasks                                                                                                          |                                                                                                                                         |❌ accessible    |                                    |https://www.kaggle.com/datasets/camnugent/california-housing-prices + https://www.kaggle.com/datasets/thedevastator/airbnb-prices-in-european-cities                                                                                                                                                                                                                                                                                                                                                                       |california                     |AirBnB_prices        |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|ImbalancedLearningRegression - A Python Package to Tackle the Imbalanced Regression Problem                                                                               |RO ; RU; SMOTE ; GN; CNN; ENN ; ADASYN ; TOMEK                                                                                           |✅|python                              |https://github.com/paobranco/ImbalancedLearningRegression/tree/master                                                                                                                                                                                                                                                                                                                                                                                                                                                      |College                        |SF_Salaries          |Summary_of_Weather             |avocado       |diabetic_data|calHousing                |insurance        |red_wine         |weatherHistory        |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Data Augmentation for Imbalanced Regression                                                                                                                               |                                                                                                                                         |Specific          |                                    |http://www2.math.uconn.edu/~valdez/data.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |telematics                     |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Imbalance in Regression Datasets                                                                                                                                          |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Oversampling Techniques for Imbalanced Data in Regression                                                                                                                 |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |ANACALT                        |bank8FM              |baseball                       |boston        |compactiv    |concrstr                  |cpuSm            |ele.1            |ele.2                 |forestFires         |friedman      |laser              |machineCPU       |mortgage           |quake         |stock               |treasury        |wankara              |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Resampling strategies for imbalanced regression: a survey and empirical analysis                                                                                          |SMOTE ; RO ; RU ; GN ; SMOGN ; WERCS ; Metric: F1S + SERA                                                                                |✅|python                              |https://github.com/JusciAvelino/imbalancedRegression/tree/main/                                                                                                                                                                                                                                                                                                                                                                                                                                                            |wine                           |anacalt              |meta                           |cocomo.numeric|Abalone      |a3                        |forestFires      |a1               |a7                    |boston              |pdgfr         |sensory            |a2               |kdd.coil.1         |triazines     |airfoild            |treasury        |mortgage             |debutenizer      |fuelCons           |heat             |california   |AvailPwr         |compactiv       |cpuSm            |maxtorqueq   |lungcancer.shedden|space.ga     |ConcrStr      |Accel         |          |          |             |        |        |                 |        |               |        |        |       |        |
|A survey on imbalanced learning: latest research, applications and future directions                                                                                      |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Research on Imbalanced Data Regression Based on Confrontation                                                                                                             |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |Airfoild                       |Abalone              |Yacht.Hydrodynamics            |concrstr      |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|A novel gradient boosting approach for imbalanced regression                                                                                                              |IMr-GB                                                                                                                                   |✅|python                              |https://github.com/vengozhang/IMr-GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |a1                             |Abalone              |Accel                          |availPwr      |bank8FM      |boston                    |ConcrStr         |cpuSm            |fuelCons              |maxtorqueq          |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Affine combination-based over-sampling for imbalanced regression                                                                                                          |                                                                                                                                         |❌               |                                    |https://github.com/lzz185/ACOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |heat                           |airfoild             |availpwr                       |ele.2         |laser        |maxtorqueq                |mortgage         |pendigits        |qsar.aquatic.toxicity |quake               |sulfur        |yacht.hydrodynamics|calHousing       |a7                 |baseball      |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Rare event prediction in imbalanced regression with adaptive weighted support vector regression                                                                           |                                                                                                                                         |❌               |                                    |http://www.ics.uci.edu/ mlearn/  + https://sci2s.ugr.es/keel/datasets.php + https://github.com/nunompmoniz/Iron                                                                                                                                                                                                                                                                                                                                                                                                            |a1                             |wages                |qsar.aquatic.toxicity          |strikes       |grison       |qsar.fish.toxicity        |laser            |airfoild         |wine                  |accel               |fuelcons      |availpwr           |abalone          |wine               |wine          |kinematics8fh       |sulfur          |house8h              |house16h         |calHousing         |onlineNewsPopRegr|mv           |fried            |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Sparse feature selection and rare value prediction in imbalanced regression                                                                                               |                                                                                                                                         |❌               |                                    |https://github.com/guanying24/SerEnet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |diabetes                       |AutoPrice            |elecLen1                       |strikes       |mortgage     |treasury                  |musicOrigin      |space.ga         |pollen                |abalone             |deltaailerons |heat               |kinematics8fh    |kinematics32fh     |deltaElevation|ailerons            |elevators       |OnlineNewsPopRegr    |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|WSMOTER: a novel approach for imbalanced regression                                                                                                                       |WSMOTER                                                                                                                                  |✅|python                              |https://drive.google.com/drive/folders/1h6Q5sKB5bnqk0Kh01sH1uc6LTp4KSPbb                                                                                                                                                                                                                                                                                                                                                                                                                                                   |a1                             |a2                   |a3                             |a4            |a5           |a6                        |a7               |Abalone          |accel                 |Ailerons            |Airfoild      |AutoPrice          |availpwr         |Bank8FM            |Boston        |California          |Compactiv       |concrstr             |cpuAct           |cpuSm              |deltaailerons    |Deltaelv     |ele.1            |elevators       |ForestFires      |fuelcons     |Heat              |House        |Kinematics32fh|MachineCpu    |maxtorqueq|Mortgage  |puma32hh     |Servo   |Treasury|Wankara          |        |               |        |        |       |        |
|Generalized Oversampling for Learning from Imbalanced datasets and Associated Theory: Application in Regression                                                           |GOLIATH                                                                                                                                  |✅|R                                   |http:local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |NO2                            |Boston               |cpuSm                          |bank8fm       |abalone      |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Data Augmentation with Variational Autoencoder for Imbalanced Dataset                                                                                                     |DAVID                                                                                                                                    |✅|python                              |https://github.com/sstocksieker/DAVID/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |bank8FM                        |abalone              |boston                         |NO2           |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Boarding for ISS: Imbalanced Self-Supervised: Discovery of a Scaled Autoencoder for Mixed Tabular Datasets                                                                |                                                                                                                                         |Specific          |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|A Selective Under-Sampling (SUS) Method For Imbalanced Regression                                                                                                         |                                                                                                                                         |❌               |                                    |NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |Abalone                        |Accel                |a1                             |a2            |a3           |a4                        |a5               |a6               |a7                    |availPwr            |bank8FM       |boston             |cpuSm            |fuelCons           |heat          |maxtorqueq          |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Error Distribution Smoothing: Advancing Low-Dimensional Imbalanced Regression                                                                                             |EDS                                                                                                                                      |✅|python                              |https://a❌ymous.4open.science/r/Error-Distribution-Smoothing-762F/README.md                                                                                                                                                                                                                                                                                                                                                                                                                                              |quadcopter dynamics            |Cartpole             |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|KNNOR-Reg: A python package for oversampling in imbalanced regression                                                                                                     |KNNOR-Reg: A python package for oversampling in imbalanced regression                                                                    |✅|python                              |https://github.com/ashhadulislam/augmentdatalib_reg_source/blob/main/README.md                                                                                                                                                                                                                                                                                                                                                                                                                                             |mortgage                       |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Uncertainty quantification driven machine learning for improving model accuracy in imbalanced regression tasks                                                            |UQDIR                                                                                                                                    |✅|python                              |https://github.com/tubadolar/uqdir/tree/main/datasets                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |accel                          |abalone              |bank8fm                        |boston        |cpusm        |ailerons                  |elevators        |earthquake       |California            |delta               |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |
|Quantification of Data Imbalance                                                                                                                                          |Imb_quanti                                                                                                                               |✅|python                              |https://github.com/OFFIS-ROC/imbaqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |Energy.efficiency              |forestfires          |Optical.interconnection.network|concrstr      |Servo        |Combined.cycle.power.plant|Grid.stability   |superconductivity|Synchronous.machine   |Auction.verification|Airfoild      |Concrete.slump.test|traffic.behaviour|Yacht.hydrodynamics|Fish.toxicity |Wave.energy.perth.49|Aquatic.toxicity|Steel.industry       |Computer.hardware|Abalone            |Age.prediction   |Parkinson    |Winequality.white|Facebook.metrics|Ailerons         |Anacalt      |Autoprice         |bank32       |bank8         |baseball      |boston    |California|deltaailerons|Deltaelv|ele.1   |ele.2            |house16h|Laser.generated|mortgage|puma32hh|Strikes|Treasury|
|An Investigation of Imbalanced Regression Loss Functions with Neural Network Models                                                                                       |Scaled-Weighted loss                                                                                                                     |✅|python                              |https://drive.google.com/drive/folders/1zOHx_BwZL45RnTWCMt3VNZ6bgMugLNQk                                                                                                                                                                                                                                                                                                                                                                                                                                                   |Simple_Ocean_Data_Assimilation |                     |                               |              |             |                          |                 |                 |                      |                    |              |                   |                 |                   |              |                    |                |                     |                 |                   |                 |             |                 |                |                 |             |                  |             |              |              |          |          |             |        |        |                 |        |               |        |        |       |        |



## Sources
These datasets have been collected from public repositories such as **UCI**, **Kaggle**, and various **GitHub pages** associated with prior research on imbalanced regression.  
Below is a list of the main source repositories used to compile this collection:
- [https://archive.ics.uci.edu](https://archive.ics.uci.edu)
- [https://www.kaggle.com](https://www.kaggle.com)
- https://sci2s.ugr.es/keel/datasets.php
- https://www.dcc.fc.up.pt/~ltorgo/EPIA2013/
- https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
- https://lib.stat.cmu.edu/datasets/
- https://github.com/paobranco/UtilityOptimizationRegression
- https://github.com/nunompmoniz/Ensembles_LIDTA2017
- https://github.com/paobranco/SMOGN-LIDTA17
- https://github.com/paobranco/NeighborhoodBiasResamplingRegression
- https://github.com/nunompmoniz/DSAA2018
- https://github.com/paobranco/Pre-processingApproachesImbalanceRegression
- https://paobranco.github.io/DataSets-IR/
- https://github.com/paobranco/REBAGG
- https://github.com/mrfoliveira/STResampling-DSAA2019/tree/master/inst/extdata
- https://github.com/nunompmoniz/IRon/tree/master/data
- https://github.com/SteiMi/denseweight
- https://github.com/SteiMi/density-based-weighting-for-imbalanced-regression/tree/main/exp3/data
- https://github.com/lsadouk/imbalanced_regression
- https://github.com/ndao1104/distributed-resampling
- https://paobranco.github.io/DataSets-IR/
- https://github.com/anibalsilva1/IRModelOptimization
- https://github.com/yingk1213/ASER
- https://data.mendeley.com/datasets/mpvwnhv4vb/2
- https://github.com/paobranco/ImbalancedLearningRegression/tree/master
- http://www2.math.uconn.edu/~valdez/data.html
- https://github.com/JusciAvelino/imbalancedRegression/tree/main/
- https://github.com/vengozhang/IMr-GB
- https://github.com/lzz185/ACOS
- https://github.com/guanying24/SerEnet
- https://drive.google.com/drive/folders/1h6Q5sKB5bnqk0Kh01sH1uc6LTp4KSPbb
- https://github.com/sstocksieker/DAVID/
- https://github.com/tubadolar/uqdir/tree/main/datasets



---
license: cc-by-4.0
---