import numpy as np import pyarrow as pa import pyarrow.compute as pc import pyarrow.parquet as pq from huggingface_hub import hf_hub_download, login # Update this if needed DATASET = "severo/notebooks_on_the_hub" def write_table(table, filename): for row_group_size in ["128k", "1m"]: for use_content_defined_chunking in ["cdc", "no_cdc"]: for compression in ["none", "snappy"]: path = f"hf://datasets/{DATASET}/{row_group_size}/{use_content_defined_chunking}/{compression}/{filename}" print(f"\nTrying to write to {path}") pq.write_table( table, path, compression=compression, use_content_defined_chunking=use_content_defined_chunking == "cdc", write_page_index=True, row_group_size=128 * 1024 if row_group_size == "128k" else 1024 * 1024, ) def main(): print("Start generation of the parquet files.") # always ask for a token (TODO: make it more convenient) login() for filename in [ "2023_05.parquet", "2023_06.parquet", "2023_07.parquet", "2023_08.parquet", "2023_09.parquet", "2023_10.parquet", "2023_11.parquet", "2023_12.parquet", "2024_01.parquet", "2024_02.parquet", "2024_03.parquet", "2024_04.parquet", "2024_05.parquet", ]: print(f"\n\nProcessing {filename}") # download the file from Hugging Face Hub into local cache path = hf_hub_download( repo_id="severo/notebooks_on_the_hub", filename=f"original/{filename}", repo_type="dataset", ) # read the cached parquet file into a PyArrow table table = pq.read_table(path) write_table(table, filename) print("\n\nDone!") if __name__ == "__main__": main()