|
"""AutoGKB Annotation Benchmark dataset.""" |
|
|
|
import csv |
|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Any |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{autogkb_annotation_benchmark_2025, |
|
title={AutoGKB Annotation Benchmark}, |
|
author={Shlok Natarajan}, |
|
year={2025}, |
|
note={A benchmark for pharmacogenomic variant-drug annotation extraction from scientific literature} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The AutoGKB Annotation Benchmark evaluates models' ability to extract pharmacogenomic variant-drug associations from scientific literature. |
|
|
|
This dataset contains 4,516 annotations across 1,431 papers, covering genetic variants, drugs, phenotype categories, and association details. Each annotation includes 25 fields ranging from core information (variant, gene, drug, PMID) to detailed phenotype and association data. |
|
|
|
The dataset is split into train, validation, and test sets. Each example includes the full article text in markdown format, making it easy to develop and test text mining models. |
|
|
|
Key features: |
|
- Pharmacogenomic variant-drug associations |
|
- Multiple phenotype categories (Efficacy, Toxicity, Dosage, Metabolism/PK) |
|
- Population-specific annotations |
|
- Comparison data for statistical associations |
|
- Full scientific article texts included directly in the dataset |
|
- PMC IDs, article titles, and file paths for easy reference |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "Apache-2.0" |
|
|
|
_URLS = {} |
|
|
|
|
|
class AutoGKBAnnotationBenchmark(datasets.GeneratorBasedBuilder): |
|
"""AutoGKB Annotation Benchmark dataset.""" |
|
|
|
VERSION = datasets.Version("1.2.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="default", |
|
version=VERSION, |
|
description="The full AutoGKB Annotation Benchmark dataset with JSONL format", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
features = datasets.Features({ |
|
"pmcid": datasets.Value("string"), |
|
"article_title": datasets.Value("string"), |
|
"article_path": datasets.Value("string"), |
|
"article_text": datasets.Value("string"), |
|
"variant_annotation_id": datasets.Value("int64"), |
|
"variant_haplotypes": datasets.Value("string"), |
|
"gene": datasets.Value("string"), |
|
"drugs": datasets.Value("string"), |
|
"pmid": datasets.Value("int64"), |
|
"phenotype_category": datasets.Value("string"), |
|
"significance": datasets.Value("string"), |
|
"notes": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"alleles": datasets.Value("string"), |
|
"specialty_population": datasets.Value("string"), |
|
"metabolizer_types": datasets.Value("string"), |
|
"is_plural": datasets.Value("string"), |
|
"is_is_not_associated": datasets.Value("string"), |
|
"direction_of_effect": datasets.Value("string"), |
|
"pd_pk_terms": datasets.Value("string"), |
|
"multiple_drugs_and_or": datasets.Value("string"), |
|
"population_types": datasets.Value("string"), |
|
"population_phenotypes_or_diseases": datasets.Value("string"), |
|
"multiple_phenotypes_or_diseases_and_or": datasets.Value("string"), |
|
"comparison_alleles_or_genotypes": datasets.Value("string"), |
|
"comparison_metabolizer_types": datasets.Value("string"), |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
|
|
if hasattr(self.config, 'data_dir') and self.config.data_dir: |
|
data_dir = Path(self.config.data_dir) |
|
elif hasattr(self.config, 'data_files') and self.config.data_files: |
|
|
|
data_dir = Path(list(self.config.data_files.values())[0][0]).parent |
|
else: |
|
data_dir = Path.cwd() |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"jsonl_file": data_dir / "train.jsonl", |
|
"articles_dir": data_dir / "articles", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"jsonl_file": data_dir / "val.jsonl", |
|
"articles_dir": data_dir / "articles", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"jsonl_file": data_dir / "test.jsonl", |
|
"articles_dir": data_dir / "articles", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, jsonl_file, articles_dir): |
|
"""Generate examples for each split.""" |
|
|
|
|
|
jsonl_path = Path(jsonl_file) |
|
articles_path = Path(articles_dir) |
|
|
|
|
|
with open(jsonl_path, 'r', encoding='utf-8') as f: |
|
for idx, line in enumerate(f): |
|
data = json.loads(line.strip()) |
|
|
|
|
|
def clean_value(value): |
|
if value is None or (isinstance(value, float) and str(value).lower() == 'nan'): |
|
return None |
|
return value |
|
|
|
|
|
article_text = "" |
|
article_path = data.get("article_path", "") |
|
if article_path: |
|
|
|
full_article_path = articles_path.parent / article_path |
|
if full_article_path.exists(): |
|
try: |
|
with open(full_article_path, 'r', encoding='utf-8') as f_article: |
|
article_text = f_article.read() |
|
except Exception: |
|
|
|
article_text = "" |
|
|
|
|
|
example = { |
|
"pmcid": clean_value(data.get("pmcid", "")), |
|
"article_title": clean_value(data.get("article_title", "")), |
|
"article_path": clean_value(data.get("article_path", "")), |
|
"article_text": article_text, |
|
"variant_annotation_id": data.get("variant_annotation_id", 0), |
|
"variant_haplotypes": clean_value(data.get("variant_haplotypes", "")), |
|
"gene": clean_value(data.get("gene", "")), |
|
"drugs": clean_value(data.get("drugs", "")), |
|
"pmid": data.get("pmid", 0), |
|
"phenotype_category": clean_value(data.get("phenotype_category", "")), |
|
"significance": clean_value(data.get("significance", "")), |
|
"notes": clean_value(data.get("notes", "")), |
|
"sentence": clean_value(data.get("sentence", "")), |
|
"alleles": clean_value(data.get("alleles", "")), |
|
"specialty_population": clean_value(data.get("specialty_population", "")), |
|
"metabolizer_types": clean_value(data.get("metabolizer_types", "")), |
|
"is_plural": clean_value(data.get("is_plural", "")), |
|
"is_is_not_associated": clean_value(data.get("is_is_not_associated", "")), |
|
"direction_of_effect": clean_value(data.get("direction_of_effect", "")), |
|
"pd_pk_terms": clean_value(data.get("pd_pk_terms", "")), |
|
"multiple_drugs_and_or": clean_value(data.get("multiple_drugs_and_or", "")), |
|
"population_types": clean_value(data.get("population_types", "")), |
|
"population_phenotypes_or_diseases": clean_value(data.get("population_phenotypes_or_diseases", "")), |
|
"multiple_phenotypes_or_diseases_and_or": clean_value(data.get("multiple_phenotypes_or_diseases_and_or", "")), |
|
"comparison_alleles_or_genotypes": clean_value(data.get("comparison_alleles_or_genotypes", "")), |
|
"comparison_metabolizer_types": clean_value(data.get("comparison_metabolizer_types", "")), |
|
} |
|
|
|
yield f"{jsonl_path.stem}_{idx}", example |