File size: 2,250 Bytes
764b073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
dataset_info:
features:
- name: depth
dtype: int64
- name: width
dtype: int64
- name: tokens
dtype: int64
- name: FLOPs_per_token
dtype: float64
- name: FLOPs
dtype: float64
- name: params
dtype: float64
- name: params_with_embeds
dtype: float64
- name: FLOPs_6N
dtype: float64
- name: params_pred_loss
dtype: float64
- name: wd_ratio
dtype: float64
- name: wd_pred_loss
dtype: float64
- name: bucket
dtype: string
splits:
- name: train
num_bytes: 1772
num_examples: 13
download_size: 6825
dataset_size: 1772
configs:
- config_name: default
data_files:
- split: train
path: mins_1e-3/mins_lr_ablation_hot_width_depth_params_relaxed_params/train-*
license: mit
---
This dataset is my cache for the [scaling-laws](https://github.com/mcleish7/gemstone-scaling-laws) related to the [gemstone models](https://huggingface.co/collections/tomg-group-umd/gemstone-models-679408ee3f19f1d4d00e8b10).
In `data_cache` is the approach 3 data cache with the mins for `delta=1e-4`, the mins for `delta=1e-3` are in `mins_1e-3`.
This is the code I used to upload it:
```
import pandas as pd
from datasets import Dataset
import os
import gc
def get_data_dict(path):
contents = os.listdir(path)
ds_store = {}
for i, file in enumerate(contents):
gc.collect()
df = pd.read_parquet(f"{path}{file}")
for col in df.columns:
if pd.api.types.is_interval_dtype(df[col]):
df[col] = df[col].astype(str)
hf_dataset = Dataset.from_pandas(df)
ds_store[file.replace(".parquet", "")] = hf_dataset
hf_dataset.push_to_hub(
"smcleish/scaling-laws-cache",
private=True,
data_dir=path.split("/")[1] + "/" + file.replace(".parquet", ""),
)
gc.collect()
ds_1 = get_data_dict("plotters/data_cache/")
ds_2 = get_data_dict("plotters/mins_1e-3/")
```
To download it do the oppostite of this. The cache is very large, so maybe target specific files you would like. The approach 3 code is expecting pandas `.parquet` files.
Please open a discussion with any questions as this is currently very experimental. |