File size: 7,078 Bytes
3631ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6305b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
---
dataset_info:
  features:
  - name: episode_id
    dtype: int64
  - name: goal
    dtype: string
  - name: screenshots_b64
    sequence: string
  - name: actions
    list:
    - name: action_type
      dtype: string
    - name: app_name
      dtype: string
    - name: direction
      dtype: string
    - name: text
      dtype: string
    - name: x
      dtype: int64
    - name: y
      dtype: int64
  - name: step_instructions
    sequence: string
  splits:
  - name: test
    num_bytes: 13222360728
    num_examples: 3051
  - name: train
    num_bytes: 54855940258
    num_examples: 12232
  download_size: 67435592965
  dataset_size: 68078300986
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
  - split: train
    path: data/train-*
---

# Dataset Card: Android Control Episodes (with Screenshots)

## Dataset Summary

This dataset contains Android UI control episodes consisting of:

- episode-level metadata (`episode_id`, `goal`)
- step-by-step instructions (`step_instructions`)
- action sequences (`actions` as a list of structs)
- base64-encoded screenshots per step (`screenshots_b64`)

Each episode records a short interaction trajectory on an Android device, including what the agent/user attempted to do and how (tap, swipe, text input, etc.).

## Supported Tasks and Benchmarks

- UI task planning and control
- Multimodal grounding (text instructions + UI visual context)
- Imitation learning / behavior cloning for mobile agents
- Action prediction and trajectory modeling

## Languages

- Prompts and instructions: English

## Dataset Structure

### Data Fields

- `episode_id` (int64): Unique identifier of the episode.
- `goal` (string): Natural language description of the objective for the episode.
- `screenshots_b64` (list[string]): Base64-encoded screenshots captured along the trajectory. Large; dominates file sizes.
- `actions` (list[struct]): Sequence of actions taken. Each element has:
  - `action_type` (string): e.g., "open_app", "click", "swipe", "type".
  - `app_name` (string or null): App associated with the action, if any.
  - `direction` (string or null): For gestures like swipe (e.g., "up", "down").
  - `text` (string or null): Text content for typing actions, if applicable.
  - `x` (int64 or null): X coordinate for tap/click.
  - `y` (int64 or null): Y coordinate for tap/click.
- `step_instructions` (list[string]): Short imperative instructions per step.

### Example Instance (images excluded for brevity)

```json
{
  "episode_id": 13,
  "goal": "On cruisedeals, I would like to view the cruise schedules for a four-night trip from New York to Canada.",
  "actions": [
    {"action_type": "open_app", "app_name": "CruiseDeals", "direction": null, "text": null, "x": null, "y": null},
    {"action_type": "click", "app_name": null, "direction": null, "text": null, "x": 313, "y": 742},
    {"action_type": "swipe", "app_name": null, "direction": "up", "text": null, "x": null, "y": null}
  ],
  "step_instructions": [
    "Open the cruisedeals app",
    "Click on the suggested searched result",
    "Swipe up to view schedules"
  ],
  "screenshots_b64": ["<base64>", "<base64>", "<base64>"]
}
```

## Data Splits

- `train`: 12,232 episodes across 275 Parquet shards (1 row group per file)
- `test`: 3,051 episodes across 67 Parquet shards (1 row group per file)

Total compressed size on the Hub is approximately 67.4 GB (train ≈ 54.3 GB, test ≈ 13.1 GB). The `screenshots_b64` column contributes the majority of the size.

Typical per-shard stats (example shard):

- ~45 episodes per shard
- ~6–7 screenshots per episode on average
- ~5–6 actions per episode on average
- ~5–6 step instructions per episode on average

## Usage

### Load with Datasets (streaming to avoid full download)

```python
from datasets import load_dataset

ds = load_dataset(
    "parquet",
    data_files="hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet",
    streaming=True,
)["train"]

for i, ex in enumerate(ds):
    ex.pop("screenshots_b64", None)  # skip large images for lightweight inspection
    print(ex["episode_id"], ex["goal"])
    if i >= 4:
        break
```

### Materialize a small slice without streaming

```python
from datasets import load_dataset

small = load_dataset(
    "parquet",
    data_files="hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet",
    split="train[:1%]",
)
print(len(small))
```

### DuckDB: schema preview and lightweight sampling

```python
import duckdb

# Peek schema of one shard
duckdb.sql("""
DESCRIBE SELECT * FROM
'hf://datasets/<owner>/<repo>@~parquet/default/train/0000.parquet'
""").show()

# Count rows via metadata only (no full scan)
duckdb.sql("""
SELECT SUM(row_group_num_rows) AS total_rows
FROM parquet_metadata('hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet')
""").show()

# Sample a few rows excluding heavy images
duckdb.sql("""
SELECT episode_id, goal,
       list_length(actions) AS num_actions,
       list_length(step_instructions) AS num_steps
FROM 'hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet'
LIMIT 10
""").show()
```

### PyArrow: footer-only metadata or row-group reads

```python
from huggingface_hub import HfFileSystem
import pyarrow.parquet as pq

fs = HfFileSystem()
path = "hf://datasets/<owner>/<repo>@~parquet/default/train/0000.parquet"

# Metadata-only: schema & row groups
with fs.open(path, "rb") as f:
    pf = pq.ParquetFile(f)
    print(pf.schema_arrow)
    print(pf.metadata.num_rows, pf.num_row_groups)

# Read a single row group without images
with fs.open(path, "rb") as f:
    pf = pq.ParquetFile(f)
    cols = [c for c in pf.schema_arrow.names if c != "screenshots_b64"]
    tbl = pf.read_row_group(0, columns=cols)
    print(tbl.slice(0, 3).to_pydict())
```

### Dask: predicate/projection pushdown

```python
import dask.dataframe as dd

ddf = dd.read_parquet(
    "hf://datasets/<owner>/<repo>@~parquet/default/train/*.parquet",
    columns=["episode_id", "goal", "actions", "step_instructions"],
)
print(ddf.head())
```

## Efficiency Tips

- Prefer streaming or column selection to avoid downloading `screenshots_b64` unless needed.
- Use DuckDB `parquet_metadata(...)` or PyArrow `ParquetFile(...).metadata` to inspect sizes/counts without reading data pages.
- Each file has one row group; shard-level parallelism is straightforward.

## Licensing

[More Information Needed]

## Citation

If you use this dataset in your work, please cite the source dataset/creators as appropriate and this repository. Example placeholder:

```bibtex
@misc{android_control_episodes,
  title  = {Android Control Episodes Dataset},
  year   = {2025},
  url    = {https://huggingface.co/datasets/smolagents/android-control}
}
```

## Limitations and Risks

- Screenshots are stored as base64 strings and can be large; consider storage and memory implications.
- Some action fields (e.g., `app_name`, `direction`, `text`) may be null for many steps.
- Visual UI elements may vary across Android versions/devices.

## Maintainers

[more information needed]