search_space = ps( booster = p_fct(levels = c("gblinear", "gbtree", "dart")), nrounds = p_dbl(lower = 1, upper = log(2000), tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))), eta = p_dbl(lower = log(1e-4), upper = log(1), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")), gamma = p_dbl(lower = log(1e-4), upper = log(7), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")), lambda = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x)), alpha = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x)), subsample = p_dbl(lower = 0.1, upper = 1), max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")), min_child_weight = p_dbl(lower = 1, upper = log(150), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")), colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")), colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")), rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"), skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"), trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"), task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id") ) domain = ps( booster = p_fct(levels = c("gblinear", "gbtree", "dart")), nrounds = p_int(lower = 3, upper = 2000), eta = p_dbl(lower = 1e-4, upper = 1, depends = booster %in% c("dart", "gbtree")), gamma = p_dbl(lower = 1e-4, upper = 7, depends = booster %in% c("dart", "gbtree")), lambda = p_dbl(lower = 1e-4, upper = 1000), alpha = p_dbl(lower = 1e-4, upper = 1000), subsample = p_dbl(lower = 0.1, upper = 1), max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")), min_child_weight = p_dbl(lower = exp(1), upper = 150, depends = booster %in% c("dart", "gbtree")), colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")), colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")), rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"), skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"), trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"), task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id") ) codomain = ps( mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"), f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"), auc = p_dbl(lower = 0, upper = 1, tags = "maximize"), logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"), ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"), rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"), rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"), timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"), timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"), mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"), ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"), nf = p_dbl(lower = 0, upper = Inf, tags = "minimize") )