import os import argparse from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix parser = argparse.ArgumentParser() parser.add_argument('--results_dir', default='./LaVIN', type=str) eval_type_dict = { "Perception": ["existence", "count", "position", "color", "posters", "celebrity", "scene", "landmark", "artwork", "OCR"], "Cognition": ["commonsense_reasoning", "numerical_calculation", "text_translation", "code_reasoning"] } class calculate_metrics: def divide_chunks(self, l, n=2): # looping till length l for i in range(0, len(l), n): yield l[i:i + n] return def parse_pred_ans(self, pred_ans): pred_label = None if pred_ans in ["yes", "no"]: pred_label = pred_ans else: prefix_pred_ans = pred_ans[:4] if "yes" in prefix_pred_ans: pred_label = "yes" elif "no" in prefix_pred_ans: pred_label = "no" else: pred_label = "other" return pred_label def compute_metric(self, gts, preds): assert len(gts) == len(preds) label_map = { "yes": 1, "no": 0, "other": -1, } gts = [label_map[x] for x in gts] preds = [label_map[x] for x in preds] acc = accuracy_score(gts, preds) clean_gts = [] clean_preds = [] other_num = 0 for gt, pred in zip(gts, preds): if pred == -1: other_num += 1 continue clean_gts.append(gt) clean_preds.append(pred) conf_mat = confusion_matrix(clean_gts, clean_preds, labels=[1,0]) precision = precision_score(clean_gts, clean_preds, average='binary') recall = recall_score(clean_gts, clean_preds, average='binary') tp, fn = conf_mat[0] fp, tn = conf_mat[1] metric_dict = dict() metric_dict = { "TP": tp, "FN": fn, "TN": tn, "FP": fp, "precision": precision, "recall": recall, "other_num": other_num, "acc": acc, } return metric_dict def process_result(self, results_dir): model_score_dict = dict() for eval_type, task_name_list in eval_type_dict.items(): print("===========", eval_type, "===========") scores = 0 task_score_dict = dict() for task_name in task_name_list: task_txt = os.path.join(results_dir, task_name + ".txt") lines = open(task_txt, 'r', encoding='utf-8').readlines() chunk_lines = list(self.divide_chunks(lines)) # one image corresponds to two questions img_num = len(chunk_lines) task_other_ans_num = 0 task_score = 0 acc_plus_correct_num = 0 gts = [] preds = [] for img_items in chunk_lines: assert len(img_items) == 2 img_correct_num = 0 for img_item in img_items: img_name, question, gt_ans, pred_ans = img_item.split("\t") gt_ans = gt_ans.lower() pred_ans = pred_ans.lower() assert gt_ans in ["yes", "no"] # gt can only be yes or no. pred_ans = self.parse_pred_ans(pred_ans) assert pred_ans in ["yes", "no", "other"] gts.append(gt_ans) preds.append(pred_ans) if gt_ans == pred_ans: img_correct_num += 1 if pred_ans not in ["yes", "no"]: task_other_ans_num += 1 if img_correct_num == 2: acc_plus_correct_num += 1 # cal TP precision acc, etc. metric_dict = self.compute_metric(gts, preds) acc_plus = acc_plus_correct_num / img_num metric_dict["acc_plus"] = acc_plus for k, v in metric_dict.items(): if k in ["acc", "acc_plus"]: task_score += v*100 task_score_dict[task_name] = task_score scores += task_score print("total score:", scores, "\n") for task_name, score in task_score_dict.items(): print("\t", task_name, " score:", score) print("\n") return if __name__ == "__main__": cal = calculate_metrics() args = parser.parse_args() results_dir = args.results_dir cal.process_result(results_dir)