Datasets:

Modalities:
Audio
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
skyil7 commited on
Commit
ed7fb2f
·
verified ·
1 Parent(s): 29b9759

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -2
README.md CHANGED
@@ -21,13 +21,59 @@ dataset_info:
21
  dtype: string
22
  splits:
23
  - name: test
24
- num_bytes: 256512910.0
25
  num_examples: 1121
26
  download_size: 235090892
27
- dataset_size: 256512910.0
28
  configs:
29
  - config_name: default
30
  data_files:
31
  - split: test
32
  path: data/test-*
 
 
 
 
 
 
 
 
33
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  dtype: string
22
  splits:
23
  - name: test
24
+ num_bytes: 256512910
25
  num_examples: 1121
26
  download_size: 235090892
27
+ dataset_size: 256512910
28
  configs:
29
  - config_name: default
30
  data_files:
31
  - split: test
32
  path: data/test-*
33
+ license: apache-2.0
34
+ language:
35
+ - ko
36
+ - en
37
+ tags:
38
+ - speech
39
+ - recognition
40
+ - code-switching
41
  ---
42
+
43
+ # HiKE: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition
44
+ > [Gio Paik](https://sites.google.com/view/giopaik)\*, [Yongbeom Kim](https://bayle0627.github.io/), [Soungmin Lee](https://minovermax.github.io/), [Sangmin Ahn](https://www.linkedin.com/in/sangmin-ahn-0656ab1b1/)†, and [Chanwoo Kim](https://www.linkedin.com/in/chanwkim)†, *Under Review*
45
+ > \* Corresponding Author, † Equal Contribution
46
+
47
+ [**✨ Code**](https://github.com/ThetaOne-AI/HiKE) | [**🤗 Dataset**](https://huggingface.co/datasets/thetaone-ai/HiKE) | [**📖 Paper**](https://arxiv.org/abs/2509.24613)
48
+
49
+ ## Introduction
50
+ HiKE is the first Korean-English Code-Switching (CS) Automatic Speech Recognition (ASR) benchmark composed of high-quality, natural CS data across various topics. We use **Mixed Error Rate (MER)** and **Point of Interest Error Rate (PIER)** [1] to precisely evaluate the models' CS ASR capability.
51
+
52
+ Experimental results show that all multilingual ASR models exhibit significantly higher error rates on code-switching data, and that their CS-ASR capabilities can be improved through fine-tuning.
53
+
54
+ For further details, please refer to [our paper]().
55
+
56
+ [1] Ugan et al., [“PIER: A Novel Metric for Evaluating What Matters in Code-Switching”](https://arxiv.org/abs/2501.09512), ICASSP 2025
57
+
58
+ ### Hierarchical CS-Level Labels
59
+ To provide more fine-grained comparison of model performance on different forms of code-switching, we labeled each utterance according to the following levels:
60
+
61
+ - Word-level CS: Code-switching that occurs at the word level, typically as the substitution of a single noun or adjective.
62
+ - Phrase-level CS: Occurs when a multi-word phrase within a sentence appears in another language.
63
+ - Sentence-level CS: The alternation between languages on a sentence-by-sentence basis.
64
+
65
+ ### Loanword Labels
66
+ Loanwords are words adopted from a foreign language and adapted to the phonology and orthography of the new language. For example, the Korean loanword **'버스' [bəs]** and the English word **'bus' [bʌs]** are pronounced almost identically and can be used interchangeably in a CS context. To avoid this problem, we meticulously labeled all loanwords contained in our dataset.
67
+
68
+ ## Citation
69
+ ```
70
+ @misc{paik2025hike,
71
+ title={{HiKE}: Hierarchical Evaluation Framework for Korean-English Code-Switching Speech Recognition},
72
+ author={Gio Paik and Yongbeom Kim and Soungmin Lee and Sangmin Ahn and Chanwoo Kim},
73
+ year={2025},
74
+ eprint={2509.24613},
75
+ archivePrefix={arXiv},
76
+ primaryClass={cs.CL},
77
+ url={https://arxiv.org/abs/2509.24613},
78
+ }
79
+ ```