from langchain.text_splitter import MarkdownTextSplitter import json from tqdm import tqdm def read_jsonl(file_path): with open(file_path, 'r', encoding='utf-8') as file: return [json.loads(line) for line in file] def save_to_jsonl(data, output_path): with open(output_path, 'w', encoding='utf-8') as file: for entry in data: file.write(json.dumps(entry, ensure_ascii=False) + '\n') def process_with_markdown_splitter(file_path): data = read_jsonl(file_path) chunk_size = 512 chunk_overlap = 50 splitter = MarkdownTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) processed = [] types = [] for entry in data: content = entry['text'] if type(content) == list: content = str(content) _id = entry['_id'] title = entry['title'] chunks = splitter.split_text(content) chunk_string = '' for chunk in chunks: chunk_string += chunk chunk_string += '\n\n' markdown = "" markdown += f"| _id | {_id} |\n" markdown += f"| title | {title} |\n" markdown += f"| text | {chunk_string}\n" processed.append({"_id": _id, "title": title, "text": markdown}) print(types) return processed names = ['ConvFinQA', 'FinanceBench', 'FinDER', 'FinQA', 'FinQABench', 'MultiHeirtt', 'TATQA'] for name in tqdm(names): for d in ['corpus', 'queries']: file_path = f'./{name}/{d}.jsonl' output_path = f'./processed_markdown/{name}/{d}.jsonl' result = process_with_markdown_splitter(file_path) save_to_jsonl(result, output_path)