Upload aux_files/train_mock_data_order.py with huggingface_hub
Browse files
aux_files/train_mock_data_order.py
CHANGED
|
@@ -1 +1,436 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file mocks the startup of the lit-gpt-dev train.py file to materialize the data order.
|
| 3 |
+
|
| 4 |
+
It either iterates the data for inspection, or converts the files to the parquet format,
|
| 5 |
+
optionally consolidating each worker's data into a single file for better portability.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import shutil
|
| 10 |
+
from functools import partial
|
| 11 |
+
from multiprocessing import Pool
|
| 12 |
+
import random
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
|
| 15 |
+
from jsonargparse import CLI
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
|
| 18 |
+
from torch.utils.data import DataLoader
|
| 19 |
+
|
| 20 |
+
from datasets import Dataset, load_dataset
|
| 21 |
+
|
| 22 |
+
from litgpt.settings import CLISettings, DataEntry
|
| 23 |
+
from litgpt.tokenizer import Tokenizer
|
| 24 |
+
from litgpt.packed_cycle_dataset import CombinedDataset, PackedDataset
|
| 25 |
+
from litgpt.data_scheduler_utils import DataSchedulerTracker, DataScheduler
|
| 26 |
+
from litgpt.data_loading_utils import generic_collate_fn
|
| 27 |
+
|
| 28 |
+
os.environ["OUTPUT_DIR"] = f"{os.path.dirname(__file__)}/output/data_order_test"
|
| 29 |
+
os.makedirs(os.environ["OUTPUT_DIR"], exist_ok=True)
|
| 30 |
+
|
| 31 |
+
# The settings class will look for these to set the topology and localization handles.
|
| 32 |
+
# for some we set them as defaults, but the world will be configured to be larger and multiprocessing
|
| 33 |
+
# will be used to parallelize the data order materialization.
|
| 34 |
+
|
| 35 |
+
# defaults
|
| 36 |
+
os.environ["SLURM_JOB_ID"] = "0"
|
| 37 |
+
os.environ["SLURM_ARRAY_JOB_ID"] = "0"
|
| 38 |
+
os.environ["SLURM_ARRAY_TASK_ID"] = "0"
|
| 39 |
+
os.environ["SLURM_ARRAY_TASK_COUNT"] = "1"
|
| 40 |
+
os.environ["MASTER_ADDR"] = "computer0"
|
| 41 |
+
os.environ["MASTER_PORT"] = "12345"
|
| 42 |
+
|
| 43 |
+
# world size controls the number of shards of work that we will mock
|
| 44 |
+
# os.environ["SLURM_JOB_NUM_NODES"] = "1" # 1 nodes
|
| 45 |
+
# os.environ["WORLD_SIZE"] = f"{1 * 1}" # 1 nodes, 1 GPUs each
|
| 46 |
+
# os.environ["SLURM_JOB_NUM_NODES"] = "4" # 4 nodes
|
| 47 |
+
# os.environ["WORLD_SIZE"] = f"{4 * 8}" # 4 nodes, 8 GPUs each
|
| 48 |
+
os.environ["SLURM_JOB_NUM_NODES"] = "32" # 32 nodes
|
| 49 |
+
os.environ["WORLD_SIZE"] = f"{32 * 8}" # 32 nodes, 8 GPUs each
|
| 50 |
+
|
| 51 |
+
os.environ["RANK"] = "0"
|
| 52 |
+
os.environ["SLURM_PROCID"] = "0"
|
| 53 |
+
# in case we want to mock a smaller number of tasks per node
|
| 54 |
+
os.environ["SLURM_NTASKS_PER_NODE"] = str(min(8, int(os.environ["WORLD_SIZE"])))
|
| 55 |
+
|
| 56 |
+
# we can run with a smaller real worker pool size
|
| 57 |
+
# but still do the same number of shards of work, just in batches of size pool
|
| 58 |
+
# NUM_PROC = int(os.environ["WORLD_SIZE"])
|
| 59 |
+
# NUM_PROC = 1
|
| 60 |
+
# NUM_PROC = 32
|
| 61 |
+
NUM_PROC = 64
|
| 62 |
+
|
| 63 |
+
assert NUM_PROC <= int(os.environ["WORLD_SIZE"]), (
|
| 64 |
+
f"NUM_PROC ({NUM_PROC}) must be less than or equal to WORLD_SIZE ({os.environ['WORLD_SIZE']}). "
|
| 65 |
+
"This is to ensure that we do not exceed the number of available ranks in the mock distributed setup."
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# when mocking the parallel workers, this is not used
|
| 69 |
+
# when linearizing, this determines how many chunks to save the complete dataset into
|
| 70 |
+
PARQUET_SHARDS = None
|
| 71 |
+
# PARQUET_SHARDS = 32
|
| 72 |
+
# PARQUET_SHARDS = 256
|
| 73 |
+
|
| 74 |
+
assert PARQUET_SHARDS is None or (
|
| 75 |
+
int(os.environ["WORLD_SIZE"]) == 1
|
| 76 |
+
), f"PARQUET_SHARDS ({PARQUET_SHARDS}) must be None when WORLD_SIZE ({os.environ['WORLD_SIZE']}) is greater than 1. "
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# we also mock a fabric-like class to hold the key fields like world_size and global_rank
|
| 80 |
+
# that we will use to configure the local view of the dataset for each "rank"
|
| 81 |
+
# when spinning up the multiprocessing workers.
|
| 82 |
+
class MockFabric:
|
| 83 |
+
"""Mock fabric to simulate distributed settings."""
|
| 84 |
+
|
| 85 |
+
def __init__(self, global_rank: int, world_size: int):
|
| 86 |
+
"""Initialize the mock fabric with global rank and world size."""
|
| 87 |
+
self.global_rank = global_rank
|
| 88 |
+
self.world_size = world_size
|
| 89 |
+
|
| 90 |
+
def print(self, *args, **kwargs):
|
| 91 |
+
"""Mock fabric.print function to simulate distributed printing."""
|
| 92 |
+
print(*args, **kwargs)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def create_dataloader(
|
| 96 |
+
data_config: list[DataEntry],
|
| 97 |
+
batch_size: int,
|
| 98 |
+
block_size: int,
|
| 99 |
+
n_chunks: int,
|
| 100 |
+
data_dir: str,
|
| 101 |
+
fabric: MockFabric,
|
| 102 |
+
seed: int = 1337,
|
| 103 |
+
*,
|
| 104 |
+
cfg: CLISettings,
|
| 105 |
+
tokenizer: Tokenizer,
|
| 106 |
+
get_filenames_only: bool = False,
|
| 107 |
+
filenames: list = None,
|
| 108 |
+
):
|
| 109 |
+
global_data_dir = data_dir
|
| 110 |
+
datasets = []
|
| 111 |
+
for curr_config in data_config:
|
| 112 |
+
|
| 113 |
+
# NOTE omitted other blocks here
|
| 114 |
+
|
| 115 |
+
prefix = curr_config.prefix
|
| 116 |
+
|
| 117 |
+
if curr_config.data_dir is not None:
|
| 118 |
+
data_dir = curr_config.data_dir
|
| 119 |
+
else:
|
| 120 |
+
data_dir = global_data_dir
|
| 121 |
+
|
| 122 |
+
if get_filenames_only:
|
| 123 |
+
if fabric.global_rank == 0:
|
| 124 |
+
filenames = [str(pth) for pth in sorted(Path(data_dir).glob(f"{prefix}*"))]
|
| 125 |
+
if cfg.shuffle_filenames:
|
| 126 |
+
random.seed(seed)
|
| 127 |
+
random.shuffle(filenames) # inplace
|
| 128 |
+
if not filenames:
|
| 129 |
+
raise FileNotFoundError(f"No files found at {str(data_dir)} with prefix {prefix}.")
|
| 130 |
+
else:
|
| 131 |
+
filenames: list[str] = None # type: ignore # hashtag believe
|
| 132 |
+
|
| 133 |
+
# If we only want to get the filenames, return them directly.
|
| 134 |
+
return filenames, None
|
| 135 |
+
else:
|
| 136 |
+
pass
|
| 137 |
+
|
| 138 |
+
# filenames = fabric.broadcast(filenames, 0) # this is a blocking op from rank 0 to all other ranks
|
| 139 |
+
# we can't broadcast in the mock multiprocessing context, so the filenames are
|
| 140 |
+
# constructed once and passed to all workers
|
| 141 |
+
assert filenames is not None, ""
|
| 142 |
+
|
| 143 |
+
# log after broadcast so we know we passed it.
|
| 144 |
+
if fabric.global_rank == 0:
|
| 145 |
+
num_processes = (fabric.world_size,)
|
| 146 |
+
process_rank = (fabric.global_rank,)
|
| 147 |
+
fabric.print(
|
| 148 |
+
f"Rank ({process_rank}/{num_processes}) glob'd {len(filenames)} files"
|
| 149 |
+
f" from {data_dir}{f' w/ prefix {prefix}' if prefix not in ['','*'] else ''},"
|
| 150 |
+
f" files[:3]: {filenames[:3]}"
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
dataset = PackedDataset(
|
| 154 |
+
filenames,
|
| 155 |
+
n_chunks=n_chunks,
|
| 156 |
+
block_size=block_size,
|
| 157 |
+
shuffle=cfg.shuffle_blocks,
|
| 158 |
+
seed=seed,
|
| 159 |
+
num_processes=fabric.world_size,
|
| 160 |
+
process_rank=fabric.global_rank,
|
| 161 |
+
data_id=prefix,
|
| 162 |
+
return_data_id=curr_config.return_data_id or cfg.return_data_id,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# NOTE omitted other blocks here
|
| 166 |
+
|
| 167 |
+
datasets.append(dataset)
|
| 168 |
+
|
| 169 |
+
if not datasets:
|
| 170 |
+
raise RuntimeError(
|
| 171 |
+
f"No data found at {data_dir}. Make sure you ran prepare_redpajama.py to create the dataset."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
weights = [curr_config.weight for curr_config in data_config]
|
| 175 |
+
data_scheduler_tracker = DataSchedulerTracker(weights)
|
| 176 |
+
|
| 177 |
+
combined_dataset = CombinedDataset(
|
| 178 |
+
datasets=datasets, seed=seed, data_scheduler_tracker=data_scheduler_tracker, data_telemetry=cfg.data_telemetry
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
parametrized_collate_fn = partial(
|
| 182 |
+
generic_collate_fn,
|
| 183 |
+
tokenizer=tokenizer,
|
| 184 |
+
block_size=cfg.loader_block_size,
|
| 185 |
+
pad_to_block_size=cfg.pad_to_block_size,
|
| 186 |
+
add_bos=cfg.add_bos,
|
| 187 |
+
add_eos=cfg.add_eos,
|
| 188 |
+
collate_checks_enabled=cfg.collate_checks_enabled,
|
| 189 |
+
all_block_size_tensors=cfg.all_block_size_tensors,
|
| 190 |
+
no_shift_ret_raw_tokens=True, # we don't shift the tokens in this mock
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
return (
|
| 194 |
+
DataLoader(
|
| 195 |
+
combined_dataset,
|
| 196 |
+
batch_size=batch_size,
|
| 197 |
+
shuffle=False,
|
| 198 |
+
pin_memory=False,
|
| 199 |
+
collate_fn=parametrized_collate_fn,
|
| 200 |
+
num_workers=cfg.dataloader_num_workers,
|
| 201 |
+
),
|
| 202 |
+
data_scheduler_tracker,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def create_dataloaders(
|
| 207 |
+
batch_size: int,
|
| 208 |
+
block_size: int,
|
| 209 |
+
fabric: MockFabric,
|
| 210 |
+
seed: int = 1337,
|
| 211 |
+
*,
|
| 212 |
+
cfg: CLISettings,
|
| 213 |
+
tokenizer: Tokenizer,
|
| 214 |
+
get_filenames_only: bool = False,
|
| 215 |
+
train_filenames: list = None,
|
| 216 |
+
val_filenames: list = None,
|
| 217 |
+
):
|
| 218 |
+
cfg.train_dataset_prefixes = [ds.prefix for ds in cfg.data_config["train_data"]]
|
| 219 |
+
cfg.val_dataset_prefixes = (
|
| 220 |
+
[ds.prefix for ds in cfg.data_config["val_data"]] if "val_data" in cfg.data_config else []
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
fabric.print(f"Creating dataloaders with seed: {seed}")
|
| 224 |
+
train_dataloader, data_scheduler_tracker = create_dataloader(
|
| 225 |
+
cfg.data_config["train_data"],
|
| 226 |
+
batch_size=batch_size,
|
| 227 |
+
block_size=block_size,
|
| 228 |
+
n_chunks=cfg.n_chunks,
|
| 229 |
+
fabric=fabric,
|
| 230 |
+
data_dir=cfg.train_data_dir,
|
| 231 |
+
seed=seed,
|
| 232 |
+
cfg=cfg,
|
| 233 |
+
tokenizer=tokenizer,
|
| 234 |
+
get_filenames_only=get_filenames_only,
|
| 235 |
+
filenames=train_filenames,
|
| 236 |
+
)
|
| 237 |
+
val_dataloader, val_data_scheduler_tracker = (
|
| 238 |
+
create_dataloader(
|
| 239 |
+
cfg.data_config["val_data"],
|
| 240 |
+
batch_size=batch_size,
|
| 241 |
+
block_size=block_size,
|
| 242 |
+
n_chunks=cfg.n_chunks,
|
| 243 |
+
fabric=fabric,
|
| 244 |
+
data_dir=cfg.val_data_dir,
|
| 245 |
+
seed=seed,
|
| 246 |
+
cfg=cfg,
|
| 247 |
+
tokenizer=tokenizer,
|
| 248 |
+
get_filenames_only=get_filenames_only,
|
| 249 |
+
filenames=val_filenames,
|
| 250 |
+
)
|
| 251 |
+
if "val_data" in cfg.data_config
|
| 252 |
+
else (None, None)
|
| 253 |
+
)
|
| 254 |
+
return train_dataloader, val_dataloader, data_scheduler_tracker, val_data_scheduler_tracker
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def materialize_worker_dataset(
|
| 258 |
+
worker_id: int,
|
| 259 |
+
total_workers: int,
|
| 260 |
+
cfg: CLISettings,
|
| 261 |
+
tokenizer: Tokenizer,
|
| 262 |
+
get_filenames_only: bool = False,
|
| 263 |
+
train_filenames: list = None,
|
| 264 |
+
val_filenames: list = None,
|
| 265 |
+
ret_dataloaders: bool = True,
|
| 266 |
+
iterate_k_steps: int = None,
|
| 267 |
+
save_k_steps_to_parquet: int = None,
|
| 268 |
+
):
|
| 269 |
+
"""Builds a mock dataset for a worker based on its ID and total workers."""
|
| 270 |
+
# Simulate some data order materialization logic
|
| 271 |
+
fabric = MockFabric(global_rank=worker_id, world_size=total_workers)
|
| 272 |
+
|
| 273 |
+
# For demonstration, we just print the worker info
|
| 274 |
+
print(f"Worker ready ({fabric.global_rank}/{fabric.world_size})")
|
| 275 |
+
|
| 276 |
+
train_dataloader, val_dataloader, data_scheduler_tracker, val_data_scheduler_tracker = create_dataloaders(
|
| 277 |
+
batch_size=cfg.micro_batch_size,
|
| 278 |
+
block_size=cfg.loader_block_size,
|
| 279 |
+
fabric=fabric,
|
| 280 |
+
seed=(cfg.seed + fabric.global_rank),
|
| 281 |
+
cfg=cfg,
|
| 282 |
+
tokenizer=tokenizer,
|
| 283 |
+
get_filenames_only=get_filenames_only,
|
| 284 |
+
train_filenames=train_filenames,
|
| 285 |
+
val_filenames=val_filenames,
|
| 286 |
+
)
|
| 287 |
+
if get_filenames_only:
|
| 288 |
+
# will have resulted in train_filenames, val_filenames, None, None
|
| 289 |
+
return train_dataloader, val_dataloader, data_scheduler_tracker, val_data_scheduler_tracker
|
| 290 |
+
|
| 291 |
+
print(f"Worker {fabric.global_rank} created dataloaders.")
|
| 292 |
+
|
| 293 |
+
if ret_dataloaders:
|
| 294 |
+
# Return the dataloaders and schedulers for further processing
|
| 295 |
+
return (
|
| 296 |
+
train_dataloader,
|
| 297 |
+
val_dataloader,
|
| 298 |
+
data_scheduler_tracker,
|
| 299 |
+
val_data_scheduler_tracker,
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
if iterate_k_steps is not None:
|
| 303 |
+
# simulate one step of the train dataloader draw
|
| 304 |
+
train_iterator = iter(train_dataloader)
|
| 305 |
+
|
| 306 |
+
for step in tqdm(range(iterate_k_steps), total=iterate_k_steps, desc=f"Worker {fabric.global_rank} iterating"):
|
| 307 |
+
|
| 308 |
+
data_batch = next(train_iterator)
|
| 309 |
+
input_ids, labels, metadata = data_batch
|
| 310 |
+
|
| 311 |
+
if step < 3 and fabric.global_rank % int(os.environ["SLURM_NTASKS_PER_NODE"]) == 0:
|
| 312 |
+
# Print the first few batches for inspection
|
| 313 |
+
# and only from the "first worker on each node"
|
| 314 |
+
print(
|
| 315 |
+
f"Worker {fabric.global_rank} processed step {step + 1}/{iterate_k_steps} with input_ids shape: {input_ids.shape}, "
|
| 316 |
+
f"labels shape: {labels.shape}, metadata: {metadata}, input_ids[:,:10]: {input_ids[:,:10]}"
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
# the final op we'll allow is to construct a hf dataset from a generator wrapped around the dataloader
|
| 320 |
+
# and then save it to parquet.
|
| 321 |
+
# we'll point the ds cache directly into the output directory and also save the parquet version there
|
| 322 |
+
if save_k_steps_to_parquet is not None:
|
| 323 |
+
|
| 324 |
+
def k_step_generator(dataloader, k_steps):
|
| 325 |
+
"""Generator to yield k steps from the dataloader."""
|
| 326 |
+
train_iterator = iter(dataloader)
|
| 327 |
+
for step in tqdm(range(k_steps), total=k_steps, desc=f"Worker {fabric.global_rank} converting to dataset"):
|
| 328 |
+
data_batch = next(train_iterator)
|
| 329 |
+
input_ids, labels, metadata = data_batch
|
| 330 |
+
for i in range(input_ids.shape[0]):
|
| 331 |
+
yield {
|
| 332 |
+
"input_ids": input_ids[i],
|
| 333 |
+
}
|
| 334 |
+
|
| 335 |
+
# Create a Dataset from the generator
|
| 336 |
+
gen_partial = partial(
|
| 337 |
+
k_step_generator,
|
| 338 |
+
dataloader=train_dataloader,
|
| 339 |
+
k_steps=save_k_steps_to_parquet,
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
cache_dir = f"{os.environ['OUTPUT_DIR']}/cache_{fabric.global_rank}"
|
| 343 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 344 |
+
|
| 345 |
+
dataset = Dataset.from_generator(gen_partial, cache_dir=cache_dir, num_proc=1)
|
| 346 |
+
|
| 347 |
+
# Save the dataset to parquet
|
| 348 |
+
output_dir = f'{os.environ["OUTPUT_DIR"]}/parquet'
|
| 349 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 350 |
+
output_path = f"{output_dir}/worker_{fabric.global_rank:03d}-of-{fabric.world_size:03d}_ordered_dataset.parquet"
|
| 351 |
+
print(f"Worker {fabric.global_rank} saving dataset to {output_path}...")
|
| 352 |
+
|
| 353 |
+
# Optionally allow sharding the dataset into multiple files
|
| 354 |
+
if PARQUET_SHARDS is None:
|
| 355 |
+
dataset.to_parquet(output_path)
|
| 356 |
+
else:
|
| 357 |
+
for i in range(PARQUET_SHARDS):
|
| 358 |
+
shard_output_path = f"{output_dir}/ordered_dataset_shard_{i:03d}-of-{PARQUET_SHARDS:03d}.parquet"
|
| 359 |
+
print(f"Worker {fabric.global_rank} saving shard {i} to {shard_output_path}...")
|
| 360 |
+
dataset.shard(num_shards=PARQUET_SHARDS, index=i).to_parquet(shard_output_path)
|
| 361 |
+
|
| 362 |
+
# clear the cache dir for this worker after saving
|
| 363 |
+
shutil.rmtree(cache_dir)
|
| 364 |
+
|
| 365 |
+
success = True # Simulate success or failure of dataset preparation
|
| 366 |
+
|
| 367 |
+
return success
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
def main():
|
| 371 |
+
"""Encapsulates main scope away from import calls."""
|
| 372 |
+
|
| 373 |
+
# Configuration loader
|
| 374 |
+
cfg: CLISettings = CLI(CLISettings) # type: ignore
|
| 375 |
+
|
| 376 |
+
if cfg.max_steps is None:
|
| 377 |
+
cfg.max_tokens_per_device = cfg.max_tokens // cfg.WORLD_SIZE
|
| 378 |
+
cfg.tokens_per_step = cfg.micro_batch_size * cfg.block_size
|
| 379 |
+
cfg.max_steps = cfg.max_tokens_per_device // cfg.tokens_per_step
|
| 380 |
+
|
| 381 |
+
print(
|
| 382 |
+
f"Computed max steps: {cfg.max_steps} based on max tokens {cfg.max_tokens} and micro batch size {cfg.micro_batch_size}."
|
| 383 |
+
)
|
| 384 |
+
else:
|
| 385 |
+
print(f"Using provided max steps: {cfg.max_steps}.")
|
| 386 |
+
|
| 387 |
+
tokenizer = Tokenizer(cfg.tokenizer_path)
|
| 388 |
+
if tokenizer.pad_id is None:
|
| 389 |
+
tokenizer.pad_id = -1
|
| 390 |
+
|
| 391 |
+
# before we start the pool, we run one instance of the worker function just to get the filenames
|
| 392 |
+
# as we'll need to pass those to the workers instead of using a distributed broadcast.
|
| 393 |
+
train_filenames, val_filenames, _, _ = materialize_worker_dataset(
|
| 394 |
+
worker_id=0,
|
| 395 |
+
total_workers=cfg.WORLD_SIZE,
|
| 396 |
+
cfg=cfg,
|
| 397 |
+
tokenizer=tokenizer,
|
| 398 |
+
get_filenames_only=True,
|
| 399 |
+
)
|
| 400 |
+
print(f"Got {len(train_filenames)} total train files and {len(val_filenames)} total val files.")
|
| 401 |
+
|
| 402 |
+
# Simulate distributed env using multiprocessing pool
|
| 403 |
+
pool_size = min(NUM_PROC, cfg.WORLD_SIZE)
|
| 404 |
+
with Pool(processes=pool_size) as pool:
|
| 405 |
+
print(f"Starting a pool of {pool_size} workers to mock a dist world size of {cfg.WORLD_SIZE}.")
|
| 406 |
+
# Prepare the worker function with the config
|
| 407 |
+
worker_func = partial(
|
| 408 |
+
materialize_worker_dataset,
|
| 409 |
+
total_workers=cfg.WORLD_SIZE,
|
| 410 |
+
cfg=cfg,
|
| 411 |
+
tokenizer=tokenizer,
|
| 412 |
+
train_filenames=train_filenames,
|
| 413 |
+
val_filenames=val_filenames,
|
| 414 |
+
get_filenames_only=False, # we want to actually process the data
|
| 415 |
+
ret_dataloaders=False, # we don't need the dataloaders back in
|
| 416 |
+
iterate_k_steps=None,
|
| 417 |
+
# iterate_k_steps=10_000, # iterate over the dataloader for k steps
|
| 418 |
+
# iterate_k_steps=cfg.max_steps,
|
| 419 |
+
# save_k_steps_to_parquet=None,
|
| 420 |
+
# save_k_steps_to_parquet=10_000, # save the dataset to parquet after k steps
|
| 421 |
+
save_k_steps_to_parquet=cfg.max_steps,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
# Map the worker function to each worker ID and print results
|
| 425 |
+
results = pool.map(worker_func, range(cfg.WORLD_SIZE))
|
| 426 |
+
|
| 427 |
+
# Print results for each worker
|
| 428 |
+
for worker_id, success in enumerate(results):
|
| 429 |
+
if success:
|
| 430 |
+
print(f"Worker {worker_id} completed successfully.")
|
| 431 |
+
else:
|
| 432 |
+
print(f"Worker {worker_id} failed to prepare dataset.")
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
if __name__ == "__main__":
|
| 436 |
+
main()
|