""" Dataset loading script for Fenic 0.4.0 API Documentation. This script can be used with the Hugging Face datasets library to load the dataset. """ import pandas as pd from datasets import Dataset, DatasetDict, Features, Value, Sequence def load_fenic_api_dataset(data_dir="."): """ Load the Fenic API documentation dataset. Args: data_dir: Directory containing the parquet files Returns: DatasetDict with three splits: api, hierarchy, and summary """ # Load the parquet files api_df = pd.read_parquet(f"{data_dir}/api_df.parquet") hierarchy_df = pd.read_parquet(f"{data_dir}/hierarchy_df.parquet") summary_df = pd.read_parquet(f"{data_dir}/fenic_summary.parquet") # Convert DataFrames to Hugging Face Datasets api_dataset = Dataset.from_pandas(api_df) hierarchy_dataset = Dataset.from_pandas(hierarchy_df) summary_dataset = Dataset.from_pandas(summary_df) # Create a DatasetDict dataset_dict = DatasetDict({ 'api': api_dataset, 'hierarchy': hierarchy_dataset, 'summary': summary_dataset }) return dataset_dict def get_dataframe_methods(dataset): """ Get all DataFrame methods from the dataset. Args: dataset: The loaded Fenic API dataset Returns: Filtered dataset containing only DataFrame methods """ api_data = dataset['api'] # Filter for DataFrame methods df_methods = [] for item in api_data: if (item['qualified_name'] and 'fenic.api.dataframe.DataFrame.' in item['qualified_name'] and item['type'] == 'method' and item['is_public']): df_methods.append(item) return Dataset.from_list(df_methods) def get_semantic_functions(dataset): """ Get all semantic functions from the dataset. Args: dataset: The loaded Fenic API dataset Returns: Filtered dataset containing only semantic functions """ api_data = dataset['api'] # Filter for semantic functions semantic_funcs = [] for item in api_data: if (item['qualified_name'] and 'fenic.api.functions.semantic.' in item['qualified_name'] and item['type'] == 'function'): semantic_funcs.append(item) return Dataset.from_list(semantic_funcs) if __name__ == "__main__": # Example usage dataset = load_fenic_api_dataset() print("Dataset loaded successfully!") print(f"API entries: {len(dataset['api'])}") print(f"Hierarchy entries: {len(dataset['hierarchy'])}") print(f"Summary entries: {len(dataset['summary'])}") # Get DataFrame methods df_methods = get_dataframe_methods(dataset) print(f"\nDataFrame methods found: {len(df_methods)}") # Get semantic functions semantic_funcs = get_semantic_functions(dataset) print(f"Semantic functions found: {len(semantic_funcs)}")