#!/usr/bin/env python3 # /// script # requires-python = ">=3.10" # dependencies = [ # "sglang[all]", # "flashinfer-python", # "transformers", # "torch", # "datasets", # "huggingface-hub[hf_transfer]", # ] # # [[tool.uv.index]] # name = "flashinfer" # url = "https://flashinfer.ai/whl/cu121/torch2.4/" # /// """ Classify text columns in Hugging Face datasets using SGLang with reasoning-aware models. This script provides efficient GPU-based classification with optional reasoning support, optimized for models like SmolLM3-3B that use tokens for chain-of-thought. Example: # Fast classification without reasoning uv run classify-dataset-sglang.py \\ --input-dataset imdb \\ --column text \\ --labels "positive,negative" \\ --output-dataset user/imdb-classified # Complex classification with reasoning uv run classify-dataset-sglang.py \\ --input-dataset arxiv-papers \\ --column abstract \\ --labels "reasoning_systems,agents,multimodal,robotics,other" \\ --output-dataset user/arxiv-classified \\ --reasoning HF Jobs example: hf jobs uv run --flavor l4x1 \\ https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\ --input-dataset user/emails \\ --column content \\ --labels "spam,ham" \\ --output-dataset user/emails-classified \\ --reasoning """ import argparse import logging import os import sys from typing import List, Dict, Any, Optional, Tuple import json import re import torch from datasets import load_dataset, Dataset from huggingface_hub import HfApi, get_token import sglang as sgl # Default model - SmolLM3 with reasoning capabilities DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B" # Minimum text length for valid classification MIN_TEXT_LENGTH = 3 # Maximum text length (in characters) to avoid context overflow MAX_TEXT_LENGTH = 4000 logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser( description="Classify text in HuggingFace datasets using SGLang with reasoning support", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=__doc__, ) # Required arguments parser.add_argument( "--input-dataset", type=str, required=True, help="Input dataset ID on Hugging Face Hub", ) parser.add_argument( "--column", type=str, required=True, help="Name of the text column to classify" ) parser.add_argument( "--labels", type=str, required=True, help="Comma-separated list of classification labels (e.g., 'positive,negative')", ) parser.add_argument( "--output-dataset", type=str, required=True, help="Output dataset ID on Hugging Face Hub", ) # Optional arguments parser.add_argument( "--model", type=str, default=DEFAULT_MODEL, help=f"Model to use for classification (default: {DEFAULT_MODEL})", ) parser.add_argument( "--reasoning", action="store_true", help="Enable reasoning mode (allows model to think through complex cases)", ) parser.add_argument( "--save-reasoning", action="store_true", help="Save reasoning traces to a separate column (requires --reasoning)", ) parser.add_argument( "--max-samples", type=int, default=None, help="Maximum number of samples to process (for testing)", ) parser.add_argument( "--hf-token", type=str, default=None, help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)", ) parser.add_argument( "--split", type=str, default="train", help="Dataset split to process (default: train)", ) parser.add_argument( "--temperature", type=float, default=0.1, help="Temperature for generation (default: 0.1)", ) parser.add_argument( "--max-tokens", type=int, default=500, help="Maximum tokens to generate (default: 500 for reasoning, 50 for non-reasoning)", ) parser.add_argument( "--batch-size", type=int, default=32, help="Batch size for processing (default: 32)", ) parser.add_argument( "--grammar-backend", type=str, default="xgrammar", choices=["outlines", "xgrammar", "llguidance"], help="Grammar backend for structured outputs (default: xgrammar)", ) return parser.parse_args() def preprocess_text(text: str) -> str: """Preprocess text for classification.""" if not text or not isinstance(text, str): return "" # Strip whitespace text = text.strip() # Truncate if too long if len(text) > MAX_TEXT_LENGTH: text = f"{text[:MAX_TEXT_LENGTH]}..." return text def validate_text(text: str) -> bool: """Check if text is valid for classification.""" return bool(text and len(text) >= MIN_TEXT_LENGTH) def create_classification_prompt(text: str, labels: List[str], reasoning: bool) -> str: """Create a prompt for classification with optional reasoning mode.""" if reasoning: system_prompt = "You are a helpful assistant that thinks step-by-step before answering." else: system_prompt = "You are a helpful assistant. /no_think" user_prompt = f"""Classify this text as one of: {', '.join(labels)} Text: {text} Classification:""" # Format as a conversation return f"<|system|>\n{system_prompt}\n<|user|>\n{user_prompt}\n<|assistant|>\n" def create_ebnf_grammar(labels: List[str]) -> str: """Create an EBNF grammar that constrains output to one of the given labels.""" # Escape any special characters in labels escaped_labels = [f'"{label}"' for label in labels] choices = ' | '.join(escaped_labels) return f"root ::= {choices}" def parse_reasoning_output(output: str, label: str) -> Optional[str]: """Extract reasoning from output if present.""" # Look for thinking tags if "" in output and "" in output: start = output.find("") end = output.find("") + len("") reasoning = output[start:end] return reasoning return None def classify_batch_with_sglang( engine: sgl.Engine, texts: List[str], labels: List[str], args: argparse.Namespace ) -> List[Dict[str, Any]]: """Classify texts using SGLang with optional reasoning.""" # Prepare prompts prompts = [] valid_indices = [] for i, text in enumerate(texts): processed_text = preprocess_text(text) if validate_text(processed_text): prompt = create_classification_prompt(processed_text, labels, args.reasoning) prompts.append(prompt) valid_indices.append(i) if not prompts: return [{"label": None, "reasoning": None} for _ in texts] # Set max tokens based on reasoning mode max_tokens = args.max_tokens if args.reasoning else 50 # Create EBNF grammar for label constraints ebnf_grammar = create_ebnf_grammar(labels) # Set up sampling parameters with EBNF constraint sampling_params = { "temperature": args.temperature, "max_new_tokens": max_tokens, "ebnf": ebnf_grammar, # This ensures output is one of the valid labels } try: # Generate with structured output constraint outputs = engine.generate(prompts, sampling_params) # Process outputs results = [{"label": None, "reasoning": None} for _ in texts] for idx, output in enumerate(outputs): original_idx = valid_indices[idx] # The output text should be just the label due to EBNF constraint classification = output.text.strip().strip('"') # Remove quotes if present # Extract reasoning if present and requested reasoning = None if args.reasoning and args.save_reasoning: # Get the full output including reasoning # Note: We need to check if SGLang provides access to full output with reasoning reasoning = parse_reasoning_output(output.text, classification) results[original_idx] = { "label": classification, "reasoning": reasoning } return results except Exception as e: logger.error(f"Error during batch classification: {e}") # Return None labels for all texts in case of error return [{"label": None, "reasoning": None} for _ in texts] def main(): args = parse_args() # Validate reasoning arguments if args.save_reasoning and not args.reasoning: logger.error("--save-reasoning requires --reasoning to be enabled") sys.exit(1) # Check authentication early logger.info("Checking authentication...") token = args.hf_token or (os.environ.get("HF_TOKEN") or get_token()) if not token: logger.error("No authentication token found. Please either:") logger.error("1. Run 'huggingface-cli login'") logger.error("2. Set HF_TOKEN environment variable") logger.error("3. Pass --hf-token argument") sys.exit(1) # Validate token by checking who we are try: api = HfApi(token=token) user_info = api.whoami() logger.info(f"Authenticated as: {user_info['name']}") except Exception as e: logger.error(f"Authentication failed: {e}") logger.error("Please check your token is valid") sys.exit(1) # Check CUDA availability if not torch.cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error("Please run on a machine with GPU support or use HF Jobs.") sys.exit(1) logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}") # Parse and validate labels labels = [label.strip() for label in args.labels.split(",")] if len(labels) < 2: logger.error("At least two labels are required for classification.") sys.exit(1) logger.info(f"Classification labels: {labels}") # Load dataset logger.info(f"Loading dataset: {args.input_dataset}") try: dataset = load_dataset(args.input_dataset, split=args.split) # Limit samples if specified if args.max_samples: dataset = dataset.select(range(min(args.max_samples, len(dataset)))) logger.info(f"Limited dataset to {len(dataset)} samples") logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'") except Exception as e: logger.error(f"Failed to load dataset: {e}") sys.exit(1) # Verify column exists if args.column not in dataset.column_names: logger.error(f"Column '{args.column}' not found in dataset.") logger.error(f"Available columns: {dataset.column_names}") sys.exit(1) # Extract texts texts = dataset[args.column] # Initialize SGLang Engine logger.info(f"Initializing SGLang Engine with model: {args.model}") logger.info(f"Reasoning mode: {'enabled' if args.reasoning else 'disabled (fast mode)'}") logger.info(f"Grammar backend: {args.grammar_backend}") try: # Determine reasoning parser based on model reasoning_parser = None if "smollm3" in args.model.lower() or "qwen" in args.model.lower(): reasoning_parser = "qwen" # Uses tokens elif "deepseek-r1" in args.model.lower(): reasoning_parser = "deepseek-r1" engine_kwargs = { "model_path": args.model, "trust_remote_code": True, "dtype": "auto", "grammar_backend": args.grammar_backend, } if reasoning_parser and args.reasoning: engine_kwargs["reasoning_parser"] = reasoning_parser logger.info(f"Using reasoning parser: {reasoning_parser}") engine = sgl.Engine(**engine_kwargs) logger.info("SGLang engine initialized successfully") except Exception as e: logger.error(f"Failed to initialize SGLang: {e}") sys.exit(1) # Process in batches logger.info(f"Starting classification with batch size {args.batch_size}...") all_results = [] for i in range(0, len(texts), args.batch_size): batch_end = min(i + args.batch_size, len(texts)) batch_texts = texts[i:batch_end] logger.info(f"Processing batch {i//args.batch_size + 1}/{(len(texts) + args.batch_size - 1)//args.batch_size}") batch_results = classify_batch_with_sglang( engine, batch_texts, labels, args ) all_results.extend(batch_results) # Extract labels and reasoning all_labels = [r["label"] for r in all_results] all_reasoning = [r["reasoning"] for r in all_results] if args.save_reasoning else None # Add classifications to dataset dataset = dataset.add_column("classification", all_labels) # Add reasoning column if requested if args.save_reasoning and args.reasoning: dataset = dataset.add_column("reasoning", all_reasoning) logger.info("Added reasoning traces to dataset") # Calculate statistics valid_count = sum(1 for label in all_labels if label is not None) invalid_count = len(all_labels) - valid_count if invalid_count > 0: logger.warning( f"{invalid_count} texts were too short or invalid for classification" ) # Show classification distribution label_counts = {label: all_labels.count(label) for label in labels} logger.info("Classification distribution:") for label, count in label_counts.items(): percentage = count / len(all_labels) * 100 if all_labels else 0 logger.info(f" {label}: {count} ({percentage:.1f}%)") if invalid_count > 0: none_percentage = invalid_count / len(all_labels) * 100 logger.info(f" Invalid/Skipped: {invalid_count} ({none_percentage:.1f}%)") # Log success rate success_rate = (valid_count / len(all_labels) * 100) if all_labels else 0 logger.info(f"Classification success rate: {success_rate:.1f}%") # Save to Hub logger.info(f"Pushing dataset to Hub: {args.output_dataset}") try: commit_msg = f"Add classifications using {args.model} with SGLang" if args.reasoning: commit_msg += " (reasoning mode)" dataset.push_to_hub( args.output_dataset, token=token, commit_message=commit_msg, ) logger.info( f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}" ) except Exception as e: logger.error(f"Failed to push to Hub: {e}") sys.exit(1) # Clean up engine.shutdown() logger.info("SGLang engine shutdown complete") if __name__ == "__main__": if len(sys.argv) == 1: print("Example HF Jobs commands:") print("\n# Fast classification (no reasoning):") print("hf jobs uv run \\") print(" --flavor l4x1 \\") print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\") print(" --input-dataset stanfordnlp/imdb \\") print(" --column text \\") print(" --labels 'positive,negative' \\") print(" --output-dataset user/imdb-classified") print("\n# Complex classification with reasoning:") print("hf jobs uv run \\") print(" --flavor l4x1 \\") print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\") print(" --input-dataset arxiv-papers \\") print(" --column abstract \\") print(" --labels 'reasoning_systems,agents,multimodal,robotics,other' \\") print(" --output-dataset user/arxiv-classified \\") print(" --reasoning --save-reasoning") sys.exit(0) main()