#!/usr/bin/env python3 # /// script # requires-python = ">=3.10" # dependencies = [ # "vllm>=0.6.6", # "transformers>=4.53.0", # "torch", # "datasets", # "huggingface-hub[hf_transfer]", # ] # /// """ Classify text columns in Hugging Face datasets using vLLM with structured outputs. This script provides efficient GPU-based classification with guaranteed valid outputs, optimized for running on HF Jobs. Example: uv run classify-dataset.py \\ --input-dataset imdb \\ --column text \\ --labels "positive,negative" \\ --output-dataset user/imdb-classified HF Jobs example: hfjobs run --flavor a10 uv run classify-dataset.py \\ --input-dataset user/emails \\ --column content \\ --labels "spam,ham" \\ --output-dataset user/emails-classified \\ --prompt-style reasoning """ import argparse import logging import os import sys from typing import List import torch from datasets import load_dataset from huggingface_hub import HfApi, get_token from transformers import AutoTokenizer from vllm import LLM, SamplingParams from vllm.sampling_params import GuidedDecodingParams # Default model - SmolLM3 for good balance of speed and quality DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B" def parse_label_descriptions(desc_string: str) -> dict: """Parse label descriptions from CLI format 'label1:desc1,label2:desc2'.""" if not desc_string: return {} descriptions = {} # Split by comma, but be careful about commas in descriptions parts = desc_string.split(',') current_label = None current_desc_parts = [] for part in parts: if ':' in part and not current_label: # New label:description pair label, desc = part.split(':', 1) current_label = label.strip() current_desc_parts = [desc.strip()] elif ':' in part and current_label: # Save previous label and start new one descriptions[current_label] = ','.join(current_desc_parts) label, desc = part.split(':', 1) current_label = label.strip() current_desc_parts = [desc.strip()] else: # Continuation of previous description (had comma in it) current_desc_parts.append(part.strip()) # Don't forget the last one if current_label: descriptions[current_label] = ','.join(current_desc_parts) return descriptions def create_messages(text: str, labels: List[str], label_descriptions: dict = None, enable_reasoning: bool = False) -> List[dict]: """Create messages for chat template with optional label descriptions.""" # Build the classification prompt if label_descriptions: # Format with descriptions categories_text = "Categories:\n" for label in labels: desc = label_descriptions.get(label, "") if desc: categories_text += f"- {label}: {desc}\n" else: categories_text += f"- {label}\n" else: # Simple format without descriptions categories_text = f"Categories: {', '.join(labels)}" if enable_reasoning: # Reasoning mode: allow thinking and request JSON output user_content = f"""Classify this text into one of these categories: {categories_text} Text: {text} Think through your classification step by step, then provide your final answer in this JSON format: {{"label": "your_chosen_label"}}""" system_content = "You are a helpful classification assistant that thinks step by step." else: # Structured output mode: fast classification if label_descriptions: user_content = f"Classify this text into one of these categories:\n\n{categories_text}\nText: {text}\n\nCategory:" else: user_content = f"Classify this text as one of: {', '.join(labels)}\n\nText: {text}\n\nLabel:" system_content = "You are a helpful classification assistant. /no_think" return [ {"role": "system", "content": system_content}, {"role": "user", "content": user_content} ] # Minimum text length for valid classification MIN_TEXT_LENGTH = 3 # Maximum text length (in characters) to avoid context overflow MAX_TEXT_LENGTH = 4000 def parse_reasoning_output(output: str, valid_labels: List[str]) -> tuple[str, str, bool]: """Parse reasoning output to extract label from JSON after tag. Returns: tuple: (label or None, full reasoning text, parsing_success) """ import json # Find the tag think_end = output.find("") if think_end != -1: # Extract everything after json_part = output[think_end + len(""):].strip() reasoning = output[:think_end + len("")] else: # No think tags, look for JSON in the output # Try to find JSON by looking for { json_start = output.find("{") if json_start != -1: json_part = output[json_start:].strip() reasoning = output[:json_start].strip() if json_start > 0 else "" else: json_part = output reasoning = output # Try to parse JSON try: # Find the first complete JSON object if "{" in json_part: # Extract just the JSON object json_str = json_part[json_part.find("{"):] # Find the matching closing brace brace_count = 0 end_pos = 0 for i, char in enumerate(json_str): if char == "{": brace_count += 1 elif char == "}": brace_count -= 1 if brace_count == 0: end_pos = i + 1 break if end_pos > 0: json_str = json_str[:end_pos] data = json.loads(json_str) label = data.get("label", "") # Validate label if label in valid_labels: return label, output, True else: logger.warning(f"Parsed label '{label}' not in valid labels: {valid_labels}") return None, output, False else: logger.warning("Could not find complete JSON object") return None, output, False else: logger.warning("No JSON found in output") return None, output, False except json.JSONDecodeError as e: logger.warning(f"JSON parsing error: {e}") return None, output, False except Exception as e: logger.warning(f"Unexpected error parsing output: {e}") return None, output, False logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser( description="Classify text in HuggingFace datasets using vLLM with structured outputs", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=__doc__, ) # Required arguments parser.add_argument( "--input-dataset", type=str, required=True, help="Input dataset ID on Hugging Face Hub", ) parser.add_argument( "--column", type=str, required=True, help="Name of the text column to classify" ) parser.add_argument( "--labels", type=str, required=True, help="Comma-separated list of classification labels (e.g., 'positive,negative')", ) parser.add_argument( "--output-dataset", type=str, required=True, help="Output dataset ID on Hugging Face Hub", ) # Optional arguments parser.add_argument( "--model", type=str, default=DEFAULT_MODEL, help=f"Model to use for classification (default: {DEFAULT_MODEL})", ) # Removed --batch-size argument as vLLM handles batching internally parser.add_argument( "--label-descriptions", type=str, default=None, help="Descriptions for each label in format 'label1:description1,label2:description2'", ) parser.add_argument( "--enable-reasoning", action="store_true", help="Enable reasoning mode with thinking traces (disables structured outputs)", ) parser.add_argument( "--max-samples", type=int, default=None, help="Maximum number of samples to process (for testing)", ) parser.add_argument( "--hf-token", type=str, default=None, help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)", ) parser.add_argument( "--split", type=str, default="train", help="Dataset split to process (default: train)", ) parser.add_argument( "--temperature", type=float, default=0.1, help="Temperature for generation (default: 0.1)", ) parser.add_argument( "--max-tokens", type=int, default=100, help="Maximum tokens to generate (default: 100, automatically increased 20x for reasoning mode)", ) parser.add_argument( "--guided-backend", type=str, default="outlines", help="Guided decoding backend (default: outlines)", ) parser.add_argument( "--shuffle", action="store_true", help="Shuffle dataset before selecting samples (useful with --max-samples for random sampling)", ) parser.add_argument( "--shuffle-seed", type=int, default=42, help="Random seed for shuffling (default: 42)", ) return parser.parse_args() def preprocess_text(text: str) -> str: """Preprocess text for classification.""" if not text or not isinstance(text, str): return "" # Strip whitespace text = text.strip() # Truncate if too long if len(text) > MAX_TEXT_LENGTH: text = f"{text[:MAX_TEXT_LENGTH]}..." return text def validate_text(text: str) -> bool: """Check if text is valid for classification.""" return bool(text and len(text) >= MIN_TEXT_LENGTH) def prepare_prompts( texts: List[str], labels: List[str], tokenizer: AutoTokenizer, label_descriptions: dict = None, enable_reasoning: bool = False ) -> tuple[List[str], List[int]]: """Prepare prompts using chat template for classification, filtering invalid texts.""" prompts = [] valid_indices = [] for i, text in enumerate(texts): processed_text = preprocess_text(text) if validate_text(processed_text): # Create messages for chat template messages = create_messages(processed_text, labels, label_descriptions, enable_reasoning) # Apply chat template prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) prompts.append(prompt) valid_indices.append(i) return prompts, valid_indices def main(): args = parse_args() # Check authentication early logger.info("Checking authentication...") token = args.hf_token or (os.environ.get("HF_TOKEN") or get_token()) if not token: logger.error("No authentication token found. Please either:") logger.error("1. Run 'huggingface-cli login'") logger.error("2. Set HF_TOKEN environment variable") logger.error("3. Pass --hf-token argument") sys.exit(1) # Validate token by checking who we are try: api = HfApi(token=token) user_info = api.whoami() logger.info(f"Authenticated as: {user_info['name']}") except Exception as e: logger.error(f"Authentication failed: {e}") logger.error("Please check your token is valid") sys.exit(1) # Check CUDA availability if not torch.cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error("Please run on a machine with GPU support or use HF Jobs.") sys.exit(1) logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}") # Parse and validate labels labels = [label.strip() for label in args.labels.split(",")] if len(labels) < 2: logger.error("At least two labels are required for classification.") sys.exit(1) logger.info(f"Classification labels: {labels}") # Parse label descriptions if provided label_descriptions = None if args.label_descriptions: label_descriptions = parse_label_descriptions(args.label_descriptions) logger.info("Label descriptions provided:") for label, desc in label_descriptions.items(): logger.info(f" {label}: {desc}") # Load dataset logger.info(f"Loading dataset: {args.input_dataset}") try: dataset = load_dataset(args.input_dataset, split=args.split) logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'") # Shuffle if requested if args.shuffle: logger.info(f"Shuffling dataset with seed {args.shuffle_seed}") dataset = dataset.shuffle(seed=args.shuffle_seed) # Limit samples if specified if args.max_samples: dataset = dataset.select(range(min(args.max_samples, len(dataset)))) logger.info(f"Limited dataset to {len(dataset)} samples") if args.shuffle: logger.info("Note: Samples were randomly selected due to shuffling") except Exception as e: logger.error(f"Failed to load dataset: {e}") sys.exit(1) # Verify column exists if args.column not in dataset.column_names: logger.error(f"Column '{args.column}' not found in dataset.") logger.error(f"Available columns: {dataset.column_names}") sys.exit(1) # Extract texts texts = dataset[args.column] # Load tokenizer for chat template formatting logger.info(f"Loading tokenizer for {args.model}") try: tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True) except Exception as e: logger.error(f"Failed to load tokenizer: {e}") sys.exit(1) # Initialize vLLM logger.info(f"Initializing vLLM with model: {args.model}") logger.info(f"Using guided decoding backend: {args.guided_backend}") try: llm = LLM( model=args.model, trust_remote_code=True, dtype="auto", gpu_memory_utilization=0.95, guided_decoding_backend=args.guided_backend, ) except Exception as e: logger.error(f"Failed to initialize vLLM: {e}") sys.exit(1) # Set up sampling parameters based on mode if args.enable_reasoning: # Reasoning mode: no guided decoding, much more tokens for thinking sampling_params = SamplingParams( temperature=args.temperature, max_tokens=args.max_tokens * 20, # 20x more tokens for extensive reasoning ) logger.info("Using reasoning mode - model will generate thinking traces with JSON output") else: # Structured output mode: guided decoding guided_params = GuidedDecodingParams(choice=labels) sampling_params = SamplingParams( guided_decoding=guided_params, temperature=args.temperature, max_tokens=args.max_tokens, ) logger.info("Using structured output with guided_choice - outputs guaranteed to be valid labels") # Prepare all prompts logger.info("Preparing prompts for classification...") all_prompts, valid_indices = prepare_prompts(texts, labels, tokenizer, label_descriptions, args.enable_reasoning) if not all_prompts: logger.error("No valid texts found for classification.") sys.exit(1) logger.info(f"Prepared {len(all_prompts)} valid prompts out of {len(texts)} texts") # Let vLLM handle batching internally logger.info("Starting classification (vLLM will handle batching internally)...") try: # Generate all classifications at once - vLLM handles batching outputs = llm.generate(all_prompts, sampling_params) # Process outputs based on mode if args.enable_reasoning: # Reasoning mode: parse JSON and extract reasoning all_classifications = [None] * len(texts) all_reasoning = [None] * len(texts) all_parsing_success = [False] * len(texts) for idx, output in enumerate(outputs): original_idx = valid_indices[idx] generated_text = output.outputs[0].text.strip() # Parse the reasoning output label, reasoning, success = parse_reasoning_output(generated_text, labels) all_classifications[original_idx] = label all_reasoning[original_idx] = reasoning all_parsing_success[original_idx] = success # Log first few examples if idx < 3: logger.info(f"\nExample {idx + 1} output:") logger.info(f"Raw output: {generated_text[:200]}...") logger.info(f"Parsed label: {label}") logger.info(f"Parsing success: {success}") # Count parsing statistics parsing_success_count = sum(1 for s in all_parsing_success if s) parsing_fail_count = sum(1 for s in all_parsing_success if s is not None and not s) logger.info(f"\nParsing statistics:") logger.info(f" Successful: {parsing_success_count}/{len(valid_indices)} ({parsing_success_count/len(valid_indices)*100:.1f}%)") logger.info(f" Failed: {parsing_fail_count}/{len(valid_indices)} ({parsing_fail_count/len(valid_indices)*100:.1f}%)") valid_texts = parsing_success_count else: # Structured output mode: direct classification all_classifications = [None] * len(texts) for idx, output in enumerate(outputs): original_idx = valid_indices[idx] generated_text = output.outputs[0].text.strip() all_classifications[original_idx] = generated_text valid_texts = len(valid_indices) # Count statistics total_texts = len(texts) except Exception as e: logger.error(f"Classification failed: {e}") sys.exit(1) # Add columns to dataset dataset = dataset.add_column("classification", all_classifications) if args.enable_reasoning: dataset = dataset.add_column("reasoning", all_reasoning) dataset = dataset.add_column("parsing_success", all_parsing_success) # Calculate statistics none_count = total_texts - valid_texts if none_count > 0: logger.warning( f"{none_count} texts were too short or invalid for classification" ) # Show classification distribution label_counts = {label: all_classifications.count(label) for label in labels} # Count None values separately none_classifications = all_classifications.count(None) logger.info("Classification distribution:") for label, count in label_counts.items(): percentage = count / total_texts * 100 if total_texts > 0 else 0 logger.info(f" {label}: {count} ({percentage:.1f}%)") if none_classifications > 0: none_percentage = none_classifications / total_texts * 100 if args.enable_reasoning: logger.info(f" Failed to parse: {none_classifications} ({none_percentage:.1f}%)") else: logger.info(f" Invalid/Skipped: {none_classifications} ({none_percentage:.1f}%)") # Log success rate success_rate = (valid_texts / total_texts * 100) if total_texts > 0 else 0 logger.info(f"Classification success rate: {success_rate:.1f}%") # Save to Hub (token already validated at start) logger.info(f"Pushing dataset to Hub: {args.output_dataset}") try: dataset.push_to_hub( args.output_dataset, token=token, commit_message=f"Add classifications using {args.model} {'with reasoning' if args.enable_reasoning else 'with structured outputs'}", ) logger.info( f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}" ) except Exception as e: logger.error(f"Failed to push to Hub: {e}") sys.exit(1) if __name__ == "__main__": if len(sys.argv) == 1: print("Example commands:") print("\n# Simple classification:") print("uv run classify-dataset.py \\") print(" --input-dataset stanfordnlp/imdb \\") print(" --column text \\") print(" --labels 'positive,negative' \\") print(" --output-dataset user/imdb-classified") print("\n# With label descriptions:") print("uv run classify-dataset.py \\") print(" --input-dataset user/support-tickets \\") print(" --column content \\") print(" --labels 'bug,feature,question' \\") print(" --label-descriptions 'bug:something is broken or not working,feature:request for new functionality,question:asking for help or clarification' \\") print(" --output-dataset user/tickets-classified") print("\n# With reasoning mode (thinking + JSON output):") print("uv run classify-dataset.py \\") print(" --input-dataset stanfordnlp/imdb \\") print(" --column text \\") print(" --labels 'positive,negative,neutral' \\") print(" --enable-reasoning \\") print(" --output-dataset user/imdb-reasoned") print("\n# HF Jobs example:") print("hf jobs uv run \\") print(" --flavor l4x1 \\") print(" --image vllm/vllm-openai:latest \\") print(" classify-dataset.py \\") print(" --input-dataset stanfordnlp/imdb \\") print(" --column text \\") print(" --labels 'positive,negative' \\") print(" --output-dataset user/imdb-classified") sys.exit(0) main()