# /// script # requires-python = ">=3.11" # dependencies = [ # "datasets", # "huggingface-hub[hf_transfer]", # "pdfplumber", # ] # /// """ Convert a directory of PDF files to a Hugging Face dataset. This script uses the built-in PDF support in the datasets library to create a dataset from PDF files. Each PDF is converted to images (one per page). Example usage: # Basic usage - convert PDFs in a directory uv run pdf-to-dataset.py /path/to/pdfs username/my-dataset # Create a private dataset uv run pdf-to-dataset.py /path/to/pdfs username/my-dataset --private # Organize by subdirectories (creates labels) # folder/invoice/doc1.pdf -> label: invoice # folder/receipt/doc2.pdf -> label: receipt uv run pdf-to-dataset.py /path/to/organized-pdfs username/categorized-pdfs """ import logging import os import sys from argparse import ArgumentParser, RawDescriptionHelpFormatter from pathlib import Path from datasets import load_dataset from huggingface_hub import login logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) def validate_directory(directory: Path) -> int: """Validate directory and count PDF files.""" if not directory.exists(): raise ValueError(f"Directory does not exist: {directory}") if not directory.is_dir(): raise ValueError(f"Path is not a directory: {directory}") # Count PDFs (including in subdirectories) pdf_count = len(list(directory.rglob("*.pdf"))) if pdf_count == 0: raise ValueError(f"No PDF files found in directory: {directory}") return pdf_count def main(): parser = ArgumentParser( description="Convert PDF files to Hugging Face datasets", formatter_class=RawDescriptionHelpFormatter, epilog=__doc__, ) parser.add_argument("directory", type=Path, help="Directory containing PDF files") parser.add_argument( "repo_id", type=str, help="Hugging Face dataset repository ID (e.g., 'username/dataset-name')", ) parser.add_argument( "--private", action="store_true", help="Create a private dataset repository" ) parser.add_argument( "--hf-token", type=str, default=None, help="Hugging Face API token (can also use HF_TOKEN environment variable)", ) args = parser.parse_args() # Handle authentication hf_token = args.hf_token or os.environ.get("HF_TOKEN") if hf_token: login(token=hf_token) else: logger.info("No HF token provided. Will attempt to use cached credentials.") try: # Validate directory pdf_count = validate_directory(args.directory) logger.info(f"Found {pdf_count} PDF files to process") # Load dataset using built-in PDF support logger.info("Loading PDFs as dataset (this may take a while for large PDFs)...") dataset = load_dataset("pdffolder", data_dir=str(args.directory)) # Log dataset info logger.info("\nDataset created successfully!") logger.info(f"Structure: {dataset}") if "train" in dataset: train_size = len(dataset["train"]) logger.info(f"Training examples: {train_size}") # Show sample if available if train_size > 0: sample = dataset["train"][0] logger.info(f"\nSample structure: {list(sample.keys())}") if "label" in sample: logger.info("Labels found - PDFs are organized by category") # Push to Hub logger.info(f"\nPushing to Hugging Face Hub: {args.repo_id}") dataset.push_to_hub(args.repo_id, private=args.private) logger.info("✅ Dataset uploaded successfully!") logger.info(f"🔗 Available at: https://huggingface.co/datasets/{args.repo_id}") # Provide next steps logger.info("\nTo use your dataset:") logger.info(f' dataset = load_dataset("{args.repo_id}")') except Exception as e: logger.error(f"Failed to create dataset: {e}") sys.exit(1) if __name__ == "__main__": if len(sys.argv) == 1: # Show help if no arguments provided print(__doc__) sys.exit(0) main()