File size: 7,573 Bytes
89f58ba
 
 
 
 
400d1bf
89f58ba
763d5c9
 
400d1bf
89f58ba
400d1bf
89f58ba
763d5c9
89f58ba
 
f9358c9
400d1bf
 
f9358c9
 
89f58ba
 
400d1bf
89f58ba
3ef9d1f
400d1bf
 
763d5c9
89f58ba
400d1bf
89f58ba
43324c8
 
 
 
 
 
 
 
 
 
400d1bf
89f58ba
400d1bf
89f58ba
400d1bf
 
 
 
 
89f58ba
7165fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea7723
43324c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400d1bf
89f58ba
400d1bf
 
 
89f58ba
 
400d1bf
89f58ba
 
400d1bf
89f58ba
cea7723
400d1bf
 
 
 
b3cfa7b
89f58ba
400d1bf
 
89f58ba
 
cea7723
89f58ba
7165fc4
 
 
 
 
 
 
 
 
 
 
400d1bf
 
b3cfa7b
89f58ba
400d1bf
 
89f58ba
 
 
 
 
 
 
 
 
 
400d1bf
 
89f58ba
 
 
400d1bf
 
 
 
 
 
 
 
 
 
 
cea7723
43324c8
 
 
 
400d1bf
89f58ba
763d5c9
 
 
 
400d1bf
89f58ba
43324c8
cea7723
 
 
 
43324c8
3f59035
 
cea7723
 
 
 
43324c8
 
 
 
 
 
 
cea7723
43324c8
 
cea7723
 
 
400d1bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
viewer: false
tags: [uv-script, ocr, vision-language-model, document-processing]
---

# OCR UV Scripts

> Part of [uv-scripts](https://huggingface.co/uv-scripts) - ready-to-run ML tools powered by UV

Ready-to-run OCR scripts that work with `uv run` - no setup required!

## πŸš€ Quick Start with HuggingFace Jobs

Run OCR on any dataset without needing your own GPU:

```bash
# Quick test with 10 samples
hf jobs uv run --flavor l4x1 \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    your-input-dataset your-output-dataset \
    --max-samples 10
```

That's it! The script will:

- βœ… Process first 10 images from your dataset
- βœ… Add OCR results as a new `markdown` column
- βœ… Push the results to a new dataset
- πŸ“Š View results at: `https://huggingface.co/datasets/[your-output-dataset]`

## πŸ“‹ Available Scripts

### RolmOCR (`rolm-ocr.py`)

Fast general-purpose OCR using [reducto/RolmOCR](https://huggingface.co/reducto/RolmOCR) based on Qwen2.5-VL-7B:

- πŸš€ **Fast extraction** - Optimized for speed and efficiency
- πŸ“„ **Plain text output** - Clean, natural text representation
- πŸ’ͺ **General-purpose** - Works well on various document types
- πŸ”₯ **Large context** - Handles up to 16K tokens
- ⚑ **Batch optimized** - Efficient processing with vLLM

### Nanonets OCR (`nanonets-ocr.py`)

State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s) that handles:

- πŸ“ **LaTeX equations** - Mathematical formulas preserved
- πŸ“Š **Tables** - Extracted as HTML format
- πŸ“ **Document structure** - Headers, lists, formatting maintained
- πŸ–ΌοΈ **Images** - Captions and descriptions included
- β˜‘οΈ **Forms** - Checkboxes rendered as ☐/β˜‘

### SmolDocling (`smoldocling-ocr.py`)

Ultra-compact document understanding using [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) with only 256M parameters:

- 🏷️ **DocTags format** - Efficient XML-like representation
- πŸ’» **Code blocks** - Preserves indentation and syntax
- πŸ”’ **Formulas** - Mathematical expressions with layout
- πŸ“Š **Tables & charts** - Structured data extraction
- πŸ“ **Layout preservation** - Bounding boxes and spatial info
- ⚑ **Ultra-fast** - Tiny model size for quick inference

### NuMarkdown (`numarkdown-ocr.py`)

Advanced reasoning-based OCR using [numind/NuMarkdown-8B-Thinking](https://huggingface.co/numind/NuMarkdown-8B-Thinking) that analyzes documents before converting to markdown:

- 🧠 **Reasoning Process** - Thinks through document layout before generation
- πŸ“Š **Complex Tables** - Superior table extraction and formatting
- πŸ“ **Mathematical Formulas** - Accurate LaTeX/math notation preservation
- πŸ” **Multi-column Layouts** - Handles complex document structures
- ✨ **Thinking Traces** - Optional inclusion of reasoning process with `--include-thinking`


## πŸ†• New Features

### Multi-Model Comparison Support

All scripts now include `inference_info` tracking for comparing multiple OCR models:

```bash
# First model
uv run rolm-ocr.py my-dataset my-dataset --max-samples 100

# Second model (appends to same dataset)
uv run nanonets-ocr.py my-dataset my-dataset --max-samples 100

# View all models used
python -c "import json; from datasets import load_dataset; ds = load_dataset('my-dataset'); print(json.loads(ds[0]['inference_info']))"
```

### Random Sampling

Get representative samples with the new `--shuffle` flag:

```bash
# Random 50 samples instead of first 50
uv run rolm-ocr.py ordered-dataset output --max-samples 50 --shuffle

# Reproducible random sampling
uv run nanonets-ocr.py dataset output --max-samples 100 --shuffle --seed 42
```

### Automatic Dataset Cards

Every OCR run now generates comprehensive dataset documentation including:
- Model configuration and parameters
- Processing statistics
- Column descriptions
- Reproduction instructions

## πŸ’» Usage Examples

### Run on HuggingFace Jobs (Recommended)

No GPU? No problem! Run on HF infrastructure:

```bash
# Basic OCR job
hf jobs uv run --flavor l4x1 \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    your-input-dataset your-output-dataset


# Real example with UFO dataset πŸ›Έ
hf jobs uv run \
    --flavor a10g-large \
    --image vllm/vllm-openai:latest \
    -s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    davanstrien/ufo-ColPali \
    your-username/ufo-ocr \
    --image-column image \
    --max-model-len 16384 \
    --batch-size 128

# NuMarkdown with reasoning traces for complex documents
hf jobs uv run \
    --image vllm/vllm-openai:latest \
    --flavor l4x4 \
    -s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \
    your-input-dataset your-output-dataset \
    --max-samples 50 \
    --include-thinking \
    --shuffle

# Private dataset with custom settings
hf jobs uv run --flavor l40sx1 \
    -s HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    private-input private-output \
    --private \
    --batch-size 32
```

### Python API

```python
from huggingface_hub import run_uv_job

job = run_uv_job(
    "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py",
    args=["input-dataset", "output-dataset", "--batch-size", "16"],
    flavor="l4x1"
)
```

### Run Locally (Requires GPU)

```bash
# Clone and run
git clone https://huggingface.co/datasets/uv-scripts/ocr
cd ocr
uv run nanonets-ocr.py input-dataset output-dataset

# Or run directly from URL
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    input-dataset output-dataset

# RolmOCR for fast text extraction
uv run rolm-ocr.py documents extracted-text
uv run rolm-ocr.py images texts --shuffle --max-samples 100  # Random sample

```

## πŸ“ Works With

Any HuggingFace dataset containing images - documents, forms, receipts, books, handwriting.

## πŸŽ›οΈ Configuration Options

### Common Options (All Scripts)

| Option                     | Default | Description                   |
| -------------------------- | ------- | ----------------------------- |
| `--image-column`           | `image` | Column containing images      |
| `--batch-size`             | `32`/`16`* | Images processed together     |
| `--max-model-len`          | `8192`/`16384`** | Max context length     |
| `--max-tokens`             | `4096`/`8192`** | Max output tokens      |
| `--gpu-memory-utilization` | `0.8`   | GPU memory usage (0.0-1.0)    |
| `--split`                  | `train` | Dataset split to process      |
| `--max-samples`            | None    | Limit samples (for testing)   |
| `--private`                | False   | Make output dataset private   |
| `--shuffle`                | False   | Shuffle dataset before processing |
| `--seed`                   | `42`    | Random seed for shuffling     |

*RolmOCR uses batch size 16
**RolmOCR uses 16384/8192

### RolmOCR Specific

- Output column is auto-generated from model name (e.g., `rolmocr_text`)
- Use `--output-column` to override the default name

πŸ’‘ **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs)

More OCR VLM Scripts coming soon! Stay tuned for updates!