|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Convert document images to markdown using NuMarkdown-8B-Thinking with vLLM. |
|
|
|
This script processes images through the NuMarkdown model to extract |
|
text with advanced reasoning capabilities, ideal for complex document understanding. |
|
|
|
Features: |
|
- Reasoning-based document analysis with thinking tokens |
|
- Superior table extraction and formatting |
|
- Complex layout understanding |
|
- Mathematical formula recognition |
|
- Clean markdown output generation |
|
- Optional thinking trace inclusion |
|
""" |
|
|
|
import argparse |
|
import base64 |
|
import io |
|
import json |
|
import logging |
|
import os |
|
import re |
|
import sys |
|
from typing import Any, Dict, List, Union, Optional, Tuple |
|
from datetime import datetime |
|
|
|
import torch |
|
from datasets import load_dataset |
|
from huggingface_hub import DatasetCard, HfApi, login |
|
from PIL import Image |
|
from toolz import partition_all |
|
from tqdm.auto import tqdm |
|
from vllm import LLM, SamplingParams |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def check_cuda_availability(): |
|
"""Check if CUDA is available and exit if not.""" |
|
if not torch.cuda.is_available(): |
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
logger.error("Please run on a machine with a CUDA-capable GPU.") |
|
sys.exit(1) |
|
else: |
|
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") |
|
|
|
|
|
def validate_and_resize_image( |
|
image: Image.Image, |
|
min_pixels: int = 100 * 28 * 28, |
|
max_pixels: int = 5000 * 28 * 28, |
|
) -> Image.Image: |
|
"""Validate and resize image to meet pixel constraints if necessary.""" |
|
width, height = image.size |
|
total_pixels = width * height |
|
|
|
if total_pixels < min_pixels or total_pixels > max_pixels: |
|
|
|
if total_pixels < min_pixels: |
|
scale = (min_pixels / total_pixels) ** 0.5 |
|
else: |
|
scale = (max_pixels / total_pixels) ** 0.5 |
|
|
|
new_width = int(width * scale) |
|
new_height = int(height * scale) |
|
|
|
logger.debug(f"Resizing image from {width}x{height} to {new_width}x{new_height}") |
|
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) |
|
|
|
return image |
|
|
|
|
|
def extract_answer_from_thinking(text: str, include_thinking: bool = False) -> str: |
|
""" |
|
Extract the final answer from NuMarkdown's thinking output. |
|
|
|
The model generates output in format: |
|
<think>reasoning process...</think> |
|
<answer>final markdown output</answer> |
|
""" |
|
if include_thinking: |
|
|
|
return text.strip() |
|
|
|
|
|
answer_pattern = r'<answer>(.*?)</answer>' |
|
answer_match = re.search(answer_pattern, text, re.DOTALL) |
|
|
|
if answer_match: |
|
return answer_match.group(1).strip() |
|
|
|
|
|
|
|
if not '<think>' in text and not '<answer>' in text: |
|
return text.strip() |
|
|
|
|
|
think_end = text.find('</think>') |
|
if think_end != -1: |
|
remaining = text[think_end + 8:].strip() |
|
|
|
remaining = remaining.replace('<answer>', '').replace('</answer>', '').strip() |
|
return remaining |
|
|
|
|
|
logger.warning("Could not extract answer from thinking tokens, returning full text") |
|
return text.strip() |
|
|
|
|
|
def make_numarkdown_message( |
|
image: Union[Image.Image, Dict[str, Any], str], |
|
prompt: str = "Convert this document to markdown. Focus on preserving structure, tables, formulas, and all textual content.", |
|
) -> List[Dict]: |
|
"""Create chat message for NuMarkdown processing.""" |
|
|
|
if isinstance(image, Image.Image): |
|
pil_img = image.convert("RGB") |
|
elif isinstance(image, dict) and "bytes" in image: |
|
pil_img = Image.open(io.BytesIO(image["bytes"])).convert("RGB") |
|
elif isinstance(image, str): |
|
pil_img = Image.open(image).convert("RGB") |
|
else: |
|
raise ValueError(f"Unsupported image type: {type(image)}") |
|
|
|
|
|
pil_img = validate_and_resize_image(pil_img) |
|
|
|
|
|
buf = io.BytesIO() |
|
pil_img.save(buf, format="PNG") |
|
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" |
|
|
|
|
|
return [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image_url", "image_url": {"url": data_uri}}, |
|
{"type": "text", "text": prompt}, |
|
], |
|
} |
|
] |
|
|
|
|
|
def create_dataset_card( |
|
source_dataset: str, |
|
model: str, |
|
num_samples: int, |
|
processing_time: str, |
|
batch_size: int, |
|
max_model_len: int, |
|
max_tokens: int, |
|
gpu_memory_utilization: float, |
|
include_thinking: bool, |
|
image_column: str = "image", |
|
split: str = "train", |
|
) -> str: |
|
"""Create a dataset card documenting the OCR process.""" |
|
model_name = model.split("/")[-1] |
|
|
|
return f"""--- |
|
tags: |
|
- ocr |
|
- document-processing |
|
- numarkdown |
|
- markdown |
|
- reasoning |
|
- thinking-tokens |
|
- uv-script |
|
- generated |
|
--- |
|
|
|
# Document OCR using {model_name} |
|
|
|
This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using NuMarkdown-8B-Thinking. |
|
|
|
## Processing Details |
|
|
|
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) |
|
- **Model**: [{model}](https://huggingface.co/{model}) |
|
- **Number of Samples**: {num_samples:,} |
|
- **Processing Time**: {processing_time} |
|
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} |
|
|
|
### Configuration |
|
|
|
- **Image Column**: `{image_column}` |
|
- **Output Column**: `markdown` |
|
- **Dataset Split**: `{split}` |
|
- **Batch Size**: {batch_size} |
|
- **Max Model Length**: {max_model_len:,} tokens |
|
- **Max Output Tokens**: {max_tokens:,} |
|
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%} |
|
- **Thinking Traces**: {"Included" if include_thinking else "Excluded (only final answers)"} |
|
|
|
## Model Information |
|
|
|
NuMarkdown-8B-Thinking is a state-of-the-art reasoning-based document OCR model that excels at: |
|
- 🧠 **Reasoning Process** - Analyzes document layout before generation |
|
- 📊 **Complex Tables** - Superior table extraction and formatting |
|
- 📐 **Mathematical Formulas** - Accurate LaTeX/math notation preservation |
|
- 📝 **Document Structure** - Maintains hierarchical document organization |
|
- 🔍 **Layout Analysis** - Understands complex multi-column layouts |
|
- ✨ **Clean Output** - Generates well-formatted markdown |
|
|
|
### Thinking Tokens |
|
|
|
This model uses a unique "thinking" process where it: |
|
1. Analyzes the document structure internally (`<think>` phase) |
|
2. Generates the final markdown output (`<answer>` phase) |
|
|
|
{"The dataset includes both thinking traces and final answers." if include_thinking else "Only the final answers are included (thinking traces removed)."} |
|
|
|
## Dataset Structure |
|
|
|
The dataset contains all original columns plus: |
|
- `markdown`: The extracted text in markdown format |
|
- `inference_info`: JSON list tracking all OCR models applied to this dataset |
|
|
|
## Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
import json |
|
|
|
# Load the dataset |
|
dataset = load_dataset("{{output_dataset_id}}", split="{split}") |
|
|
|
# Access the markdown text |
|
for example in dataset: |
|
print(example["markdown"]) |
|
break |
|
|
|
# View all OCR models applied to this dataset |
|
inference_info = json.loads(dataset[0]["inference_info"]) |
|
for info in inference_info: |
|
print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") |
|
``` |
|
|
|
## Reproduction |
|
|
|
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) NuMarkdown OCR script: |
|
|
|
```bash |
|
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\ |
|
{source_dataset} \\ |
|
<output-dataset> \\ |
|
--image-column {image_column} \\ |
|
--batch-size {batch_size} \\ |
|
--max-model-len {max_model_len} \\ |
|
--max-tokens {max_tokens} \\ |
|
--gpu-memory-utilization {gpu_memory_utilization} \\ |
|
{"--include-thinking" if include_thinking else ""} |
|
``` |
|
|
|
## Performance |
|
|
|
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second |
|
- **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization |
|
- **Model Size**: 8.29B parameters |
|
|
|
Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts) |
|
""" |
|
|
|
|
|
def main( |
|
input_dataset: str, |
|
output_dataset: str, |
|
image_column: str = "image", |
|
batch_size: int = 16, |
|
model: str = "numind/NuMarkdown-8B-Thinking", |
|
max_model_len: int = 16384, |
|
max_tokens: int = 8192, |
|
gpu_memory_utilization: float = 0.9, |
|
hf_token: str = None, |
|
split: str = "train", |
|
max_samples: int = None, |
|
private: bool = False, |
|
shuffle: bool = False, |
|
seed: int = 42, |
|
include_thinking: bool = False, |
|
temperature: float = 0.0, |
|
custom_prompt: Optional[str] = None, |
|
): |
|
"""Process images from HF dataset through NuMarkdown model.""" |
|
|
|
|
|
check_cuda_availability() |
|
|
|
|
|
start_time = datetime.now() |
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
|
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") |
|
if HF_TOKEN: |
|
login(token=HF_TOKEN) |
|
|
|
|
|
logger.info(f"Loading dataset: {input_dataset}") |
|
dataset = load_dataset(input_dataset, split=split) |
|
|
|
|
|
if image_column not in dataset.column_names: |
|
raise ValueError( |
|
f"Column '{image_column}' not found. Available: {dataset.column_names}" |
|
) |
|
|
|
|
|
if shuffle: |
|
logger.info(f"Shuffling dataset with seed {seed}") |
|
dataset = dataset.shuffle(seed=seed) |
|
|
|
|
|
if max_samples: |
|
dataset = dataset.select(range(min(max_samples, len(dataset)))) |
|
logger.info(f"Limited to {len(dataset)} samples") |
|
|
|
|
|
logger.info(f"Initializing vLLM with model: {model}") |
|
llm = LLM( |
|
model=model, |
|
trust_remote_code=True, |
|
max_model_len=max_model_len, |
|
gpu_memory_utilization=gpu_memory_utilization, |
|
limit_mm_per_prompt={"image": 1}, |
|
) |
|
|
|
|
|
sampling_params = SamplingParams( |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
) |
|
|
|
|
|
prompt = custom_prompt or "Convert this document to markdown. Focus on preserving structure, tables, formulas, and all textual content." |
|
|
|
|
|
all_markdown = [] |
|
|
|
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") |
|
logger.info(f"Including thinking traces: {include_thinking}") |
|
|
|
|
|
for batch_indices in tqdm( |
|
partition_all(batch_size, range(len(dataset))), |
|
total=(len(dataset) + batch_size - 1) // batch_size, |
|
desc="OCR processing", |
|
): |
|
batch_indices = list(batch_indices) |
|
batch_images = [dataset[i][image_column] for i in batch_indices] |
|
|
|
try: |
|
|
|
batch_messages = [ |
|
make_numarkdown_message(img, prompt) for img in batch_images |
|
] |
|
|
|
|
|
outputs = llm.chat(batch_messages, sampling_params) |
|
|
|
|
|
for output in outputs: |
|
raw_text = output.outputs[0].text.strip() |
|
|
|
markdown_text = extract_answer_from_thinking(raw_text, include_thinking) |
|
all_markdown.append(markdown_text) |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing batch: {e}") |
|
|
|
all_markdown.extend(["[OCR FAILED]"] * len(batch_images)) |
|
|
|
|
|
logger.info("Adding markdown column to dataset") |
|
dataset = dataset.add_column("markdown", all_markdown) |
|
|
|
|
|
logger.info("Updating inference_info...") |
|
|
|
|
|
if "inference_info" in dataset.column_names: |
|
|
|
try: |
|
existing_info = json.loads(dataset[0]["inference_info"]) |
|
if not isinstance(existing_info, list): |
|
existing_info = [existing_info] |
|
except (json.JSONDecodeError, TypeError): |
|
existing_info = [] |
|
|
|
dataset = dataset.remove_columns(["inference_info"]) |
|
else: |
|
existing_info = [] |
|
|
|
|
|
new_info = { |
|
"column_name": "markdown", |
|
"model_id": model, |
|
"processing_date": datetime.now().isoformat(), |
|
"batch_size": batch_size, |
|
"max_tokens": max_tokens, |
|
"gpu_memory_utilization": gpu_memory_utilization, |
|
"max_model_len": max_model_len, |
|
"include_thinking": include_thinking, |
|
"temperature": temperature, |
|
"prompt": prompt, |
|
"script": "numarkdown-ocr.py", |
|
"script_version": "1.0.0", |
|
"script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py" |
|
} |
|
existing_info.append(new_info) |
|
|
|
|
|
info_json = json.dumps(existing_info, ensure_ascii=False) |
|
dataset = dataset.add_column("inference_info", [info_json] * len(dataset)) |
|
|
|
|
|
logger.info(f"Pushing to {output_dataset}") |
|
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) |
|
|
|
|
|
end_time = datetime.now() |
|
processing_duration = end_time - start_time |
|
processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes" |
|
|
|
|
|
logger.info("Creating dataset card...") |
|
card_content = create_dataset_card( |
|
source_dataset=input_dataset, |
|
model=model, |
|
num_samples=len(dataset), |
|
processing_time=processing_time, |
|
batch_size=batch_size, |
|
max_model_len=max_model_len, |
|
max_tokens=max_tokens, |
|
gpu_memory_utilization=gpu_memory_utilization, |
|
include_thinking=include_thinking, |
|
image_column=image_column, |
|
split=split, |
|
) |
|
|
|
|
|
full_repo_id = output_dataset |
|
try: |
|
card = DatasetCard(card_content) |
|
|
|
if "/" not in output_dataset: |
|
api = HfApi(token=HF_TOKEN) |
|
user_info = api.whoami() |
|
full_repo_id = f"{user_info['name']}/{output_dataset}" |
|
logger.info(f"Using full repo ID: {full_repo_id}") |
|
|
|
card.push_to_hub(full_repo_id, token=HF_TOKEN) |
|
logger.info("✅ Dataset card created and pushed!") |
|
except Exception as e: |
|
logger.warning(f"Could not push dataset card: {e}") |
|
logger.info("Dataset was successfully created but card upload failed. You can add it manually.") |
|
|
|
logger.info("✅ OCR conversion complete!") |
|
logger.info( |
|
f"Dataset available at: https://huggingface.co/datasets/{full_repo_id}" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
if len(sys.argv) == 1: |
|
print("=" * 80) |
|
print("NuMarkdown-8B-Thinking OCR with Reasoning") |
|
print("=" * 80) |
|
print("\nThis script converts document images to markdown using") |
|
print("the NuMarkdown-8B-Thinking model with advanced reasoning capabilities.") |
|
print("\nFeatures:") |
|
print("- 🧠 Reasoning-based document analysis") |
|
print("- 📊 Superior table extraction and formatting") |
|
print("- 📐 Mathematical formula recognition") |
|
print("- 📝 Complex layout understanding") |
|
print("- ✨ Clean markdown generation") |
|
print("- 🔍 Optional thinking trace inclusion") |
|
print("\nExample usage:") |
|
print("\n1. Basic OCR conversion:") |
|
print(" uv run numarkdown-ocr.py document-images markdown-docs") |
|
print("\n2. Include thinking traces:") |
|
print(" uv run numarkdown-ocr.py complex-docs analyzed-docs --include-thinking") |
|
print("\n3. With custom settings:") |
|
print(" uv run numarkdown-ocr.py scientific-papers extracted-text \\") |
|
print(" --batch-size 8 \\") |
|
print(" --max-tokens 8192 \\") |
|
print(" --gpu-memory-utilization 0.9") |
|
print("\n4. Process a subset for testing:") |
|
print(" uv run numarkdown-ocr.py large-dataset test-output --max-samples 10") |
|
print("\n5. Custom prompt for specific needs:") |
|
print(" uv run numarkdown-ocr.py invoices invoice-data \\") |
|
print(' --custom-prompt "Extract all invoice details including line items"') |
|
print("\n6. Running on HF Jobs:") |
|
print(" hf jobs uv run --flavor l4x1 \\") |
|
print(' -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\') |
|
print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \\") |
|
print(" your-document-dataset \\") |
|
print(" your-markdown-output") |
|
print("\n" + "=" * 80) |
|
print("\nFor full help, run: uv run numarkdown-ocr.py --help") |
|
sys.exit(0) |
|
|
|
parser = argparse.ArgumentParser( |
|
description="OCR images to markdown using NuMarkdown-8B-Thinking with reasoning", |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
epilog=""" |
|
Examples: |
|
# Basic usage |
|
uv run numarkdown-ocr.py my-images-dataset ocr-results |
|
|
|
# Include thinking traces in output |
|
uv run numarkdown-ocr.py documents analyzed-docs --include-thinking |
|
|
|
# Process subset for testing |
|
uv run numarkdown-ocr.py large-dataset test-output --max-samples 100 |
|
|
|
# Custom prompt for specific extraction |
|
uv run numarkdown-ocr.py forms form-data --custom-prompt "Extract all form fields and values" |
|
|
|
# Random sample from dataset |
|
uv run numarkdown-ocr.py ordered-dataset random-sample --max-samples 50 --shuffle |
|
""", |
|
) |
|
|
|
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") |
|
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") |
|
parser.add_argument( |
|
"--image-column", |
|
default="image", |
|
help="Column containing images (default: image)", |
|
) |
|
parser.add_argument( |
|
"--batch-size", |
|
type=int, |
|
default=16, |
|
help="Batch size for processing (default: 16, lower than others due to model size)", |
|
) |
|
parser.add_argument( |
|
"--model", |
|
default="numind/NuMarkdown-8B-Thinking", |
|
help="Model to use (default: numind/NuMarkdown-8B-Thinking)", |
|
) |
|
parser.add_argument( |
|
"--max-model-len", |
|
type=int, |
|
default=16384, |
|
help="Maximum model context length (default: 16384)", |
|
) |
|
parser.add_argument( |
|
"--max-tokens", |
|
type=int, |
|
default=8192, |
|
help="Maximum tokens to generate (default: 8192)", |
|
) |
|
parser.add_argument( |
|
"--gpu-memory-utilization", |
|
type=float, |
|
default=0.9, |
|
help="GPU memory utilization (default: 0.9)", |
|
) |
|
parser.add_argument("--hf-token", help="Hugging Face API token") |
|
parser.add_argument( |
|
"--split", default="train", help="Dataset split to use (default: train)" |
|
) |
|
parser.add_argument( |
|
"--max-samples", |
|
type=int, |
|
help="Maximum number of samples to process (for testing)", |
|
) |
|
parser.add_argument( |
|
"--private", action="store_true", help="Make output dataset private" |
|
) |
|
parser.add_argument( |
|
"--shuffle", |
|
action="store_true", |
|
help="Shuffle the dataset before processing (useful for random sampling)", |
|
) |
|
parser.add_argument( |
|
"--seed", |
|
type=int, |
|
default=42, |
|
help="Random seed for shuffling (default: 42)", |
|
) |
|
parser.add_argument( |
|
"--include-thinking", |
|
action="store_true", |
|
help="Include thinking traces in output (default: only final answers)", |
|
) |
|
parser.add_argument( |
|
"--temperature", |
|
type=float, |
|
default=0.0, |
|
help="Temperature for generation (default: 0.0 for deterministic)", |
|
) |
|
parser.add_argument( |
|
"--custom-prompt", |
|
type=str, |
|
help="Custom prompt for the model (overrides default)", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
main( |
|
input_dataset=args.input_dataset, |
|
output_dataset=args.output_dataset, |
|
image_column=args.image_column, |
|
batch_size=args.batch_size, |
|
model=args.model, |
|
max_model_len=args.max_model_len, |
|
max_tokens=args.max_tokens, |
|
gpu_memory_utilization=args.gpu_memory_utilization, |
|
hf_token=args.hf_token, |
|
split=args.split, |
|
max_samples=args.max_samples, |
|
private=args.private, |
|
shuffle=args.shuffle, |
|
seed=args.seed, |
|
include_thinking=args.include_thinking, |
|
temperature=args.temperature, |
|
custom_prompt=args.custom_prompt, |
|
) |