# /// script # requires-python = ">=3.10" # dependencies = [ # "datasets", # "flashinfer-python", # "huggingface-hub[hf_transfer]", # "hf-xet>= 1.1.7", # "torch", # "transformers", # "vllm>=0.8.5", # ] # # /// """ Generate responses for prompts in a dataset using vLLM for efficient GPU inference. This script loads a dataset from Hugging Face Hub containing chat-formatted messages, applies the model's chat template, generates responses using vLLM, and saves the results back to the Hub with a comprehensive dataset card. Example usage: # Local execution with auto GPU detection uv run generate-responses.py \\ username/input-dataset \\ username/output-dataset \\ --messages-column messages # With custom model and sampling parameters uv run generate-responses.py \\ username/input-dataset \\ username/output-dataset \\ --model-id meta-llama/Llama-3.1-8B-Instruct \\ --temperature 0.9 \\ --top-p 0.95 \\ --max-tokens 2048 # HF Jobs execution (see script output for full command) hf jobs uv run --flavor a100x4 ... """ import argparse import logging import os import sys from datetime import datetime from typing import Optional from datasets import load_dataset from huggingface_hub import DatasetCard, get_token, login from torch import cuda from tqdm.auto import tqdm from transformers import AutoTokenizer from vllm import LLM, SamplingParams # Enable HF Transfer for faster downloads os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) def check_gpu_availability() -> int: """Check if CUDA is available and return the number of GPUs.""" if not cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error( "Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor." ) sys.exit(1) num_gpus = cuda.device_count() for i in range(num_gpus): gpu_name = cuda.get_device_name(i) gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3 logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory") return num_gpus def create_dataset_card( source_dataset: str, model_id: str, messages_column: str, prompt_column: Optional[str], sampling_params: SamplingParams, tensor_parallel_size: int, num_examples: int, generation_time: str, num_skipped: int = 0, max_model_len_used: Optional[int] = None, ) -> str: """Create a comprehensive dataset card documenting the generation process.""" filtering_section = "" if num_skipped > 0: skip_percentage = (num_skipped / num_examples) * 100 processed = num_examples - num_skipped filtering_section = f""" ### Filtering Statistics - **Total Examples**: {num_examples:,} - **Processed**: {processed:,} ({100 - skip_percentage:.1f}%) - **Skipped (too long)**: {num_skipped:,} ({skip_percentage:.1f}%) - **Max Model Length Used**: {max_model_len_used:,} tokens Note: Prompts exceeding the maximum model length were skipped and have empty responses.""" return f"""--- tags: - generated - vllm - uv-script --- # Generated Responses Dataset This dataset contains generated responses for prompts from [{source_dataset}](https://huggingface.co/datasets/{source_dataset}). ## Generation Details - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) - **Input Column**: `{prompt_column if prompt_column else messages_column}` ({"plain text prompts" if prompt_column else "chat messages"}) - **Model**: [{model_id}](https://huggingface.co/{model_id}) - **Number of Examples**: {num_examples:,} - **Generation Date**: {generation_time}{filtering_section} ### Sampling Parameters - **Temperature**: {sampling_params.temperature} - **Top P**: {sampling_params.top_p} - **Top K**: {sampling_params.top_k} - **Min P**: {sampling_params.min_p} - **Max Tokens**: {sampling_params.max_tokens} - **Repetition Penalty**: {sampling_params.repetition_penalty} ### Hardware Configuration - **Tensor Parallel Size**: {tensor_parallel_size} - **GPU Configuration**: {tensor_parallel_size} GPU(s) ## Dataset Structure The dataset contains all columns from the source dataset plus: - `response`: The generated response from the model ## Generation Script Generated using the vLLM inference script from [uv-scripts/vllm](https://huggingface.co/datasets/uv-scripts/vllm). To reproduce this generation: ```bash uv run https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\ {source_dataset} \\ \\ --model-id {model_id} \\ {"--prompt-column " + prompt_column if prompt_column else "--messages-column " + messages_column} \\ --temperature {sampling_params.temperature} \\ --top-p {sampling_params.top_p} \\ --top-k {sampling_params.top_k} \\ --max-tokens {sampling_params.max_tokens}{f" \\\\\\n --max-model-len {max_model_len_used}" if max_model_len_used else ""} ``` """ def main( src_dataset_hub_id: str, output_dataset_hub_id: str, model_id: str = "Qwen/Qwen3-30B-A3B-Instruct-2507", messages_column: str = "messages", prompt_column: Optional[str] = None, output_column: str = "response", temperature: float = 0.7, top_p: float = 0.8, top_k: int = 20, min_p: float = 0.0, max_tokens: int = 16384, repetition_penalty: float = 1.0, gpu_memory_utilization: float = 0.90, max_model_len: Optional[int] = None, tensor_parallel_size: Optional[int] = None, skip_long_prompts: bool = True, max_samples: Optional[int] = None, hf_token: Optional[str] = None, ): """ Main generation pipeline. Args: src_dataset_hub_id: Input dataset on Hugging Face Hub output_dataset_hub_id: Where to save results on Hugging Face Hub model_id: Hugging Face model ID for generation messages_column: Column name containing chat messages prompt_column: Column name containing plain text prompts (alternative to messages_column) output_column: Column name for generated responses temperature: Sampling temperature top_p: Top-p sampling parameter top_k: Top-k sampling parameter min_p: Minimum probability threshold max_tokens: Maximum tokens to generate repetition_penalty: Repetition penalty parameter gpu_memory_utilization: GPU memory utilization factor max_model_len: Maximum model context length (None uses model default) tensor_parallel_size: Number of GPUs to use (auto-detect if None) skip_long_prompts: Skip prompts exceeding max_model_len instead of failing max_samples: Maximum number of samples to process (None for all) hf_token: Hugging Face authentication token """ generation_start_time = datetime.now().isoformat() # GPU check and configuration num_gpus = check_gpu_availability() if tensor_parallel_size is None: tensor_parallel_size = num_gpus logger.info( f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}" ) else: logger.info(f"Using specified tensor_parallel_size={tensor_parallel_size}") if tensor_parallel_size > num_gpus: logger.warning( f"Requested {tensor_parallel_size} GPUs but only {num_gpus} available" ) # Authentication - try multiple methods HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token() if not HF_TOKEN: logger.error("No HuggingFace token found. Please provide token via:") logger.error(" 1. --hf-token argument") logger.error(" 2. HF_TOKEN environment variable") logger.error(" 3. Run 'huggingface-cli login' or use login() in Python") sys.exit(1) logger.info("HuggingFace token found, authenticating...") login(token=HF_TOKEN) # Initialize vLLM logger.info(f"Loading model: {model_id}") vllm_kwargs = { "model": model_id, "tensor_parallel_size": tensor_parallel_size, "gpu_memory_utilization": gpu_memory_utilization, } if max_model_len is not None: vllm_kwargs["max_model_len"] = max_model_len logger.info(f"Using max_model_len={max_model_len}") llm = LLM(**vllm_kwargs) # Load tokenizer for chat template logger.info("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_id) # Create sampling parameters sampling_params = SamplingParams( temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, max_tokens=max_tokens, repetition_penalty=repetition_penalty, ) # Load dataset logger.info(f"Loading dataset: {src_dataset_hub_id}") dataset = load_dataset(src_dataset_hub_id, split="train") # Apply max_samples if specified if max_samples is not None and max_samples < len(dataset): logger.info(f"Limiting dataset to {max_samples} samples") dataset = dataset.select(range(max_samples)) total_examples = len(dataset) logger.info(f"Dataset loaded with {total_examples:,} examples") # Determine which column to use and validate if prompt_column: # Use prompt column mode if prompt_column not in dataset.column_names: logger.error( f"Column '{prompt_column}' not found. Available columns: {dataset.column_names}" ) sys.exit(1) logger.info(f"Using prompt column mode with column: '{prompt_column}'") use_messages = False else: # Use messages column mode if messages_column not in dataset.column_names: logger.error( f"Column '{messages_column}' not found. Available columns: {dataset.column_names}" ) sys.exit(1) logger.info(f"Using messages column mode with column: '{messages_column}'") use_messages = True # Get effective max length for filtering if max_model_len is not None: effective_max_len = max_model_len else: # Get model's default max length effective_max_len = llm.llm_engine.model_config.max_model_len logger.info(f"Using effective max model length: {effective_max_len}") # Process messages and apply chat template logger.info("Preparing prompts...") all_prompts = [] valid_prompts = [] valid_indices = [] skipped_info = [] for i, example in enumerate(tqdm(dataset, desc="Processing prompts")): if use_messages: # Messages mode: use existing chat messages messages = example[messages_column] # Apply chat template prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) else: # Prompt mode: convert plain text to messages format user_prompt = example[prompt_column] messages = [{"role": "user", "content": user_prompt}] # Apply chat template prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) all_prompts.append(prompt) # Count tokens if filtering is enabled if skip_long_prompts: tokens = tokenizer.encode(prompt) if len(tokens) <= effective_max_len: valid_prompts.append(prompt) valid_indices.append(i) else: skipped_info.append((i, len(tokens))) else: valid_prompts.append(prompt) valid_indices.append(i) # Log filtering results if skip_long_prompts and skipped_info: logger.warning( f"Skipped {len(skipped_info)} prompts that exceed max_model_len ({effective_max_len} tokens)" ) logger.info("Skipped prompt details (first 10):") for idx, (prompt_idx, token_count) in enumerate(skipped_info[:10]): logger.info( f" - Example {prompt_idx}: {token_count} tokens (exceeds by {token_count - effective_max_len})" ) if len(skipped_info) > 10: logger.info(f" ... and {len(skipped_info) - 10} more") skip_percentage = (len(skipped_info) / total_examples) * 100 if skip_percentage > 10: logger.warning(f"WARNING: {skip_percentage:.1f}% of prompts were skipped!") if not valid_prompts: logger.error("No valid prompts to process after filtering!") sys.exit(1) # Generate responses - vLLM handles batching internally logger.info(f"Starting generation for {len(valid_prompts):,} valid prompts...") logger.info("vLLM will handle batching and scheduling automatically") outputs = llm.generate(valid_prompts, sampling_params) # Extract generated text and create full response list logger.info("Extracting generated responses...") responses = [""] * total_examples # Initialize with empty strings for idx, output in enumerate(outputs): original_idx = valid_indices[idx] response = output.outputs[0].text.strip() responses[original_idx] = response # Add responses to dataset logger.info("Adding responses to dataset...") dataset = dataset.add_column(output_column, responses) # Create dataset card logger.info("Creating dataset card...") card_content = create_dataset_card( source_dataset=src_dataset_hub_id, model_id=model_id, messages_column=messages_column, prompt_column=prompt_column, sampling_params=sampling_params, tensor_parallel_size=tensor_parallel_size, num_examples=total_examples, generation_time=generation_start_time, num_skipped=len(skipped_info) if skip_long_prompts else 0, max_model_len_used=effective_max_len if skip_long_prompts else None, ) # Push dataset to hub logger.info(f"Pushing dataset to: {output_dataset_hub_id}") dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) # Push dataset card card = DatasetCard(card_content) card.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) logger.info("✅ Generation complete!") logger.info( f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}" ) if __name__ == "__main__": if len(sys.argv) > 1: parser = argparse.ArgumentParser( description="Generate responses for dataset prompts using vLLM", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: # Basic usage with default Qwen model uv run generate-responses.py input-dataset output-dataset # With custom model and parameters uv run generate-responses.py input-dataset output-dataset \\ --model-id meta-llama/Llama-3.1-8B-Instruct \\ --temperature 0.9 \\ --max-tokens 2048 # Force specific GPU configuration uv run generate-responses.py input-dataset output-dataset \\ --tensor-parallel-size 2 \\ --gpu-memory-utilization 0.95 # Using environment variable for token HF_TOKEN=hf_xxx uv run generate-responses.py input-dataset output-dataset """, ) parser.add_argument( "src_dataset_hub_id", help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)", ) parser.add_argument( "output_dataset_hub_id", help="Output dataset name on Hugging Face Hub" ) parser.add_argument( "--model-id", type=str, default="Qwen/Qwen3-30B-A3B-Instruct-2507", help="Model to use for generation (default: Qwen3-30B-A3B-Instruct-2507)", ) parser.add_argument( "--messages-column", type=str, default="messages", help="Column containing chat messages (default: messages)", ) parser.add_argument( "--prompt-column", type=str, help="Column containing plain text prompts (alternative to --messages-column)", ) parser.add_argument( "--output-column", type=str, default="response", help="Column name for generated responses (default: response)", ) parser.add_argument( "--max-samples", type=int, help="Maximum number of samples to process (default: all)", ) parser.add_argument( "--temperature", type=float, default=0.7, help="Sampling temperature (default: 0.7)", ) parser.add_argument( "--top-p", type=float, default=0.8, help="Top-p sampling parameter (default: 0.8)", ) parser.add_argument( "--top-k", type=int, default=20, help="Top-k sampling parameter (default: 20)", ) parser.add_argument( "--min-p", type=float, default=0.0, help="Minimum probability threshold (default: 0.0)", ) parser.add_argument( "--max-tokens", type=int, default=16384, help="Maximum tokens to generate (default: 16384)", ) parser.add_argument( "--repetition-penalty", type=float, default=1.0, help="Repetition penalty (default: 1.0)", ) parser.add_argument( "--gpu-memory-utilization", type=float, default=0.90, help="GPU memory utilization factor (default: 0.90)", ) parser.add_argument( "--max-model-len", type=int, help="Maximum model context length (default: model's default)", ) parser.add_argument( "--tensor-parallel-size", type=int, help="Number of GPUs to use (default: auto-detect)", ) parser.add_argument( "--hf-token", type=str, help="Hugging Face token (can also use HF_TOKEN env var)", ) parser.add_argument( "--skip-long-prompts", action="store_true", default=True, help="Skip prompts that exceed max_model_len instead of failing (default: True)", ) parser.add_argument( "--no-skip-long-prompts", dest="skip_long_prompts", action="store_false", help="Fail on prompts that exceed max_model_len", ) args = parser.parse_args() main( src_dataset_hub_id=args.src_dataset_hub_id, output_dataset_hub_id=args.output_dataset_hub_id, model_id=args.model_id, messages_column=args.messages_column, prompt_column=args.prompt_column, output_column=args.output_column, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, max_tokens=args.max_tokens, repetition_penalty=args.repetition_penalty, gpu_memory_utilization=args.gpu_memory_utilization, max_model_len=args.max_model_len, tensor_parallel_size=args.tensor_parallel_size, skip_long_prompts=args.skip_long_prompts, max_samples=args.max_samples, hf_token=args.hf_token, ) else: # Show HF Jobs example when run without arguments print(""" vLLM Response Generation Script ============================== This script requires arguments. For usage information: uv run generate-responses.py --help Example HF Jobs command with multi-GPU: # If you're logged in with huggingface-cli, token will be auto-detected hf jobs uv run \\ --flavor l4x4 \\ https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\ username/input-dataset \\ username/output-dataset \\ --messages-column messages \\ --model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \\ --temperature 0.7 \\ --max-tokens 16384 """)