Datasets:
File size: 8,805 Bytes
1fd74c4 fb567f9 1fd74c4 fb567f9 2ac8ce3 fb567f9 1fd74c4 fb567f9 1fd74c4 fb567f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
---
license: mit
task_categories:
- image-classification
- object-detection
- visual-question-answering
- zero-shot-image-classification
language:
- en
tags:
- ego4d
- egocentric-vision
- computer-vision
- random-sampling
- video-frames
- first-person-view
- activity-recognition
size_categories:
- 10K<n<100K
pretty_name: Ego4D Random Views Dataset
dataset_info:
features:
- name: image
dtype: image
- name: frame_id
dtype: string
- name: video_uid
dtype: string
- name: video_filename
dtype: string
- name: video_path
dtype: string
- name: frame_idx
dtype: int32
- name: total_frames
dtype: int32
- name: timestamp_sec
dtype: float32
- name: fps
dtype: float32
- name: worker_id
dtype: int32
- name: generated_at
dtype: string
- name: image_width
dtype: int32
- name: image_height
dtype: int32
- name: original_shape_height
dtype: int32
- name: original_shape_width
dtype: int32
- name: original_shape_channels
dtype: int32
splits:
- name: train
num_bytes: 21000000000
num_examples: 20000
download_size: 21000000000
dataset_size: 21000000000
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
viewer: true
---
# Ego4D Random Views Dataset
This dataset contains **20,000 random view frames** sampled from the [Ego4D dataset](https://ego4d-data.org/) using a high-performance multi-process generation system.

## Dataset Overview
- **Total Images**: 20,000 high-quality frames
- **Image Format**: PNG (1024×1024 resolution)
- **Source**: Ego4D v2 dataset (52,665+ video files)
- **Sampling Method**: Multi-process random sampling with maximum diversity
- **Generation Time**: 797.57 seconds (~13 minutes)
- **Generation Speed**: 25.08 frames/second
- **Success Rate**: 100.0%
## Key Features
🎬 **Maximum Diversity**: Sampled from 50,000+ different Ego4D videos
🚀 **High Performance**: Generated using 128 parallel workers
📊 **Complete Metadata**: Full metadata for each frame including video source, timestamp, etc.
🎯 **High Quality**: 1024×1024 resolution PNG images
💾 **Efficient Storage**: Stored in parquet format for fast loading
🔍 **Rich Context**: Each frame includes video UID, timestamp, and source information
## Dataset Schema
Each sample contains:
| Field | Type | Description |
|-------|------|-------------|
| `image` | Image | The frame image (1024×1024 PNG) |
| `frame_id` | string | Unique frame identifier |
| `video_uid` | string | Original Ego4D video UID |
| `video_filename` | string | Source video filename |
| `video_path` | string | Full path to source video |
| `frame_idx` | int32 | Frame index in original video |
| `total_frames` | int32 | Total frames in source video |
| `timestamp_sec` | float32 | Timestamp in video (seconds) |
| `fps` | float32 | Video frame rate |
| `worker_id` | int32 | Generation worker ID |
| `generated_at` | string | Generation timestamp |
| `image_width` | int32 | Image width (1024) |
| `image_height` | int32 | Image height (1024) |
| `original_shape_*` | int32 | Original video frame dimensions |
## Usage
### Quick Start
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("weikaih/ego4d-random-views-20k")
# Get a sample
sample = dataset['train'][0]
image = sample['image'] # PIL Image
print(f"Video: {sample['video_filename']}")
print(f"Timestamp: {sample['timestamp_sec']:.2f}s")
```
### Exploring the Data
```python
import matplotlib.pyplot as plt
# Display a sample image
sample = dataset['train'][42]
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.imshow(sample['image'])
plt.title(f"Frame from {sample['video_uid'][:8]}...")
plt.axis('off')
plt.subplot(1, 2, 2)
plt.text(0.1, 0.8, f"Video: {sample['video_filename'][:30]}...")
plt.text(0.1, 0.7, f"Timestamp: {sample['timestamp_sec']:.2f}s")
plt.text(0.1, 0.6, f"Frame: {sample['frame_idx']}/{sample['total_frames']}")
plt.text(0.1, 0.5, f"FPS: {sample['fps']}")
plt.axis('off')
plt.show()
```
### PyTorch Integration
```python
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
# Define transforms
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Custom dataset class
class Ego4DDataset(torch.utils.data.Dataset):
def __init__(self, hf_dataset, transform=None):
self.dataset = hf_dataset
self.transform = transform
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
sample = self.dataset[idx]
image = sample['image']
if self.transform:
image = self.transform(image)
return image, sample
# Create dataset and dataloader
pytorch_dataset = Ego4DDataset(dataset['train'], transform=transform)
dataloader = DataLoader(pytorch_dataset, batch_size=32, shuffle=True)
# Training loop example
for batch_idx, (images, metadata) in enumerate(dataloader):
# Your training code here
print(f"Batch {batch_idx}: {images.shape}")
if batch_idx >= 2: # Just show first few batches
break
```
### Data Analysis
```python
import pandas as pd
from collections import Counter
# Convert to pandas for analysis
data = []
for sample in dataset['train']:
data.append({
'video_uid': sample['video_uid'],
'timestamp_sec': sample['timestamp_sec'],
'fps': sample['fps'],
'total_frames': sample['total_frames'],
'worker_id': sample['worker_id']
})
df = pd.DataFrame(data)
# Basic statistics
print(f"Unique videos: {df['video_uid'].nunique()}")
print(f"Average FPS: {df['fps'].mean():.2f}")
print(f"Timestamp range: {df['timestamp_sec'].min():.2f}s - {df['timestamp_sec'].max():.2f}s")
# Video distribution
video_counts = Counter(df['video_uid'])
print(f"Samples per video - Min: {min(video_counts.values())}, Max: {max(video_counts.values())}")
```
## Applications
This dataset is suitable for:
- **Egocentric vision research**: First-person view understanding
- **Activity recognition**: Daily activity classification
- **Object detection**: Objects in natural settings
- **Scene understanding**: Indoor/outdoor scene analysis
- **Transfer learning**: Pre-training for egocentric tasks
- **Multi-modal learning**: Combining with video metadata
- **Temporal analysis**: Using timestamp information
## Generation Statistics
- **Target Frames**: 20,000
- **Generated Frames**: 20,000
- **Success Rate**: 100.0%
- **Generation Time**: 13.3 minutes
- **Workers Used**: 128
- **Processing Speed**: 25.08 frames/second
- **Source Videos**: 52,665+ Ego4D video files
- **Diversity**: Maximum diversity through distributed sampling
## Technical Details
### Sampling Strategy
- **Random Selection**: Both video and frame positions randomly sampled
- **Worker Distribution**: Videos distributed across 128 workers for diversity
- **Quality Control**: Automatic validation and error recovery
- **Metadata Preservation**: Complete provenance tracking
### Data Quality
- **Image Quality**: All frames validated during generation
- **Resolution**: Consistent 1024×1024 PNG format
- **Color Space**: RGB color space
- **Compression**: PNG lossless compression
- **Metadata Completeness**: 100% metadata coverage
## Citation
If you use this dataset, please cite the original Ego4D paper:
```bibtex
@inproceedings{grauman2022ego4d,
title={Ego4d: Around the world in 3,000 hours of egocentric video},
author={Grauman, Kristen and Westbury, Andrew and Byrnes, Eugene and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={18211--18230},
year={2022}
}
```
## License
This dataset follows the same license terms as the original Ego4D dataset. Please refer to the [Ego4D license](https://ego4d-data.org/pdfs/Ego4D-License.pdf) for usage terms.
## Dataset Creation
This dataset was generated using a high-performance multi-process sampling system designed for maximum diversity and efficiency. The generation process:
1. **Video Indexing**: Scanned 52,665+ Ego4D video files
2. **Distributed Sampling**: Used 128 parallel workers for maximum diversity
3. **Quality Assurance**: Validated each frame during generation
4. **Metadata Collection**: Captured complete provenance information
5. **Efficient Upload**: Used HuggingFace datasets library with parquet format
For more details on the generation process, see the [technical documentation](https://github.com/your-repo/ego4d-random-sampling).
|