import os import json from PIL import Image from datasets import Dataset, DatasetDict, Features, Sequence, Value from datasets import Image as ImageData from io import BytesIO # 新增导入 from datasets import disable_caching disable_caching() # 完全禁用缓存 def generate_examples(json_path): with open(json_path, 'r', encoding='utf-8') as f: # i = 0 for line in f: # i += 2 # renew cache # print(i) # verify cache renewed try: data = json.loads(line) # 转换图片路径并加载图像 raw_path = data['images'][0] # ========== 新增图像处理部分开始 ========== with Image.open(raw_path, "r") as img: # 统一转换为RGB模式 if img.mode != 'RGB': img = img.convert('RGB') resized_img = img # ========== 新增图像处理部分结束 ========== # 提取图片ID(文件名数字部分) filename = os.path.basename(raw_path) # 141126815887.jpg img_id = os.path.splitext(filename)[0] # 141126815887 yield { "images": [resized_img], "problem": data["query"], "answer": data["response"], "id": img_id } # print(data["query"]) # print(data["response"]) # exit() except Exception as e: data = json.loads(line) print(data) print(f"Error processing {raw_path}: {str(e)}") continue def main(): train_json_path="./magic_mirror_data_train_r1.jsonl" test_json_path="./magic_mirror_data_test_r1.jsonl" base_dir = "./" train_parquet_path =base_dir + "magic_mirror_data_train_r1.parquet" test_parquet_path =base_dir + "magic_mirror_data_test_r1.parquet" train_json_path = "./magic_mirror_data_train_resample_r1.jsonl" train_parquet_path = "./magic_mirror_data_train_resample_r1.parquet" # 创建训练集和测试集 test_ds = Dataset.from_generator(generate_examples, gen_kwargs={"json_path": test_json_path}) test_ds.cast_column("images", Sequence(ImageData())).to_parquet(test_parquet_path) train_ds = Dataset.from_generator(generate_examples, gen_kwargs={"json_path": train_json_path}) train_ds.cast_column("images", Sequence(ImageData())).to_parquet(train_parquet_path) if __name__ == "__main__": main()