--- license: mit --- # Introduction MCL-MLAAD is the first multilingual benchmark for speech deepfake source tracing. It spans mono- and cross-lingual protocols, includes DSP and SSL baselines, studies language-specific fine-tuning for cross-lingual generalization, and tests robustness to unseen languages/speakers. See arXiv:2508.04143. ## Download the Dataset Install the `datasets` package: ```bash pip install datasets ``` Log in with your Hugging Face account: ```bash huggingface-cli login ``` Load the dataset in Python: ```bash from datasets import load_dataset # Download from HF and cache ds = load_dataset("xxuan-speech/MCL-MLAAD") # Optionally: Save the dataset to your own directory ds.save_to_disk("mcl-mlaad_local") ``` ### Code: A reference implementation Code is available at: https://github.com/xuanxixi/Multilingual-Source-Tracing ### Bibtex: ```bash @misc{xuan2025multilingualsourcetracingspeech, title={Multilingual Source Tracing of Speech Deepfakes: A First Benchmark}, author={Xi Xuan and Yang Xiao and Rohan Kumar Das and Tomi Kinnunen}, year={2025}, eprint={2508.04143}, archivePrefix={arXiv}, primaryClass={eess.AS}, url={https://arxiv.org/abs/2508.04143} } ```